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effects.  This study examined (1) congestion back propagation to estimate the length of the queue and travel time from upstream 
locations to the incident location and (2) queue dissipation.  Shockwave analysis, queuing theory, and cellular automata were 
initially considered.  Literature indicated that shockwave analysis and queuing theory underestimate freeway travel time under 
some conditions.  A cellular automata simulation model for I-66 eastbound between US 29 and I-495 was developed.  This 
model requires inputs of incident location, day, time, and estimates of duration, lane closures and timing, and driver re-routing 
by ramp.  The model provides estimates of travel times every 0.2 mile upstream of the incident at every minute after the start of 
the incident and allows for the determination of queue length over time.  It was designed to be used from the beginning of the 
incident and performed well for normal conditions and incidents, but additional calibration was required for rerouting behavior.  
We recommend that the Virginia Department of Transportation (1) further pursue cellular automata approaches for near-real 
time applications along freeways; and (2) consider adopting an approach to address detector failures and errors.  Adopting these 
recommendations should improve VDOT’s freeway real-time travel time estimation and other applications based on detector 
data. 
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ABSTRACT 
 

 Incidents account for a large portion of all congestion and a need clearly exists for tools 
to predict and estimate incident effects.  This study examined (1) congestion back propagation to 
estimate the length of the queue and travel time from upstream locations to the incident location 
and (2) queue dissipation.  Shockwave analysis, queuing theory, and cellular automata were 
initially considered.  Literature indicated that shockwave analysis and queuing theory 
underestimate freeway travel time under some conditions.  A cellular automata simulation model 
for I-66 eastbound between US 29 and I-495 was developed.  This model requires inputs of 
incident location, day, time, and estimates of duration, lane closures and timing, and driver re-
routing by ramp.  The model provides estimates of travel times every 0.2 mile upstream of the 
incident at every minute after the start of the incident and allows for the determination of queue 
length over time.  It was designed to be used from the beginning of the incident and performed 
well for normal conditions and incidents, but additional calibration was required for rerouting 
behavior.  We recommend that the Virginia Department of Transportation (1) further pursue 
cellular automata approaches for near-real time applications along freeways; and (2) consider 
adopting an approach to address detector failures and errors.  Adopting these recommendations 
should improve VDOT’s freeway real-time travel time estimation and other applications based 
on detector data. 
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INTRODUCTION 
 

 Traffic congestion continues to increase in the United States and worldwide, causing 4.2 
billion hours in delays and costing $78 billion in 2007 in 437 urban areas in the United States 
(Schrank and Lomax, 2007).  Incidents account for between 25% (Corbin et al., 2007) and 50% 
of congestion (Booz Allen Hamilton, 1998).  With such a large portion of congestion being 
attributed to semi-random events, a need clearly exists to be able to predict and estimate the 
effects of incidents, particularly in terms of congestion propagation and delays.  Such estimates 
aid state departments of transportation (DOTs) with congestion mitigation plans and information 
provision to motorists so they may select alternate routes and plan for delays.  Drivers are 
frequently alerted to the incident occurrence and its location via mass media and advanced 
technologies, such as Intelligent Transportation Systems (ITS).  Other information that aids 
drivers’ decision making includes (1) how long the total trip will take, (2) how to avoid incident-
related traffic, and (3) how long it will take to get through the congestion.  Drivers might also 
seek information on incident clearance time; however this aspect is outside the scope of this 
project.  Predicting travel time based on real-time traffic conditions is generally difficult, but 
important to items (1) and (3).   

 
 To monitor real-time traffic conditions, the Virginia Department of Transportation 

(VDOT) installed numerous inductive loop detectors on Interstate 66 (I-66) for both directions, 
eastbound and westbound, from Exit 47 to 75. The loop detectors provide real-time traffic 
information such as traffic volumes, speed, and occupancy. Although these data are valuable in 
their current presentation to engineers, they are not very informative for the general public, who 
better understand travel time.  Travel times could be predicted based on historical time-of-day 
data, but the historical travel times might be vastly different from incident-related travel time.   

 
 This study involved the development of a cellular automata microsimulation model to 

estimate incident related travel time, relating to (1) and (3) above.  The simulation tool was 
designed to be used at the beginning of the incident or for hypothetical incidents.  This model 
requires inputs of incident location, day, time, and estimates of duration, lane closures and 



  2

timing, and driver re-routing by ramp.  The model provides estimates of travel times every 0.2 
mile upstream of the incident at every minute after the start of the incident and allows for the 
determination of queue length over time.  Providing upstream drivers with information on the 
incident location, travel time and distance to the back of the queue, and location of incident-
related queues allows them to address item (2) on their own.  In particular, drivers would be able 
to leave the facility at an exit prior to the congestion, provided they were familiar with the 
network and know or can find alternate routes to their destinations.   

 
 Figure 1 indicates where this study and its models fit into the overall timeline of an 

incident.  Depending on vehicle arrival rates, the congestion back propagation and queue 
building extend from the time the incident occurred until the service rate exceeds the queue 
arrival rate.  Queue dissipation covers the time the incident is cleared to the time that normal 
flow returns. 

 
Figure 1. Incident Timeline (Adapted from Hobeika and Dhulopala, 2004).   

 
 

Description of Study Area 
 

The focus of the study was a 16-mile eastbound section of I-66.  Figure 2 indicates the on- 
and off-ramps and the number of lanes in each portion of the study area.  As can be seen from 
Figure 2, the number of lanes decreased in the eastern portion of the study area.  Some of the 
lanes had special designations.  From US 29 to US 50, three lanes were general purpose and the 
leftmost was an HOV lane, which was open to general traffic during the off-peak period.   
Between US 50 and I-495, the road had two general purpose lanes, a right hand shoulder lane, 
and a left high occupancy vehicle (HOV) lane.  The right-side shoulder lane was open as a 
general purpose (GP) lane during the morning peak period to relieve congestion.  East of I-495, 
the road consisted of three lanes, which narrowed to two lanes at Westmoreland Road.  During 
the peak period, these lanes were all HOV lanes.  Normally one auxiliary lane existed in the 
ramp sections: an acceleration lane for on-ramps and an exit lane for off-ramps.  

 
 Peak period eastbound congestion on I-66 routinely started at about 5:30 a.m. and 

continued until 10:00 a.m. on weekdays. For the purpose of reducing congestion and making full 
use of the road, VDOT implemented various lane control regulations on eastbound I-66, listed as 
follows (VDOT, 2008): 

 
1. East of I-495, all eastbound lanes were restricted to vehicles with two or more people 

(HOV-2) on weekdays from 6:30 a.m. to 9:00 a.m. 
2. West of I-495, in the eastbound direction, the far left lane of the GP lanes spanning 

the entire test area was reserved for HOV-2 from 5:30 a.m. to 9:30 a.m. 
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3. The right shoulder between US 50 and I-495 was open to all traffic from 5:30 a.m. to 
10:00 a.m.  (This regulation is for 2007.  From 2008, the period changes to 5:30 a.m. 
to 11:00 a.m.)  

4. On weekends, holidays and off-peak hours, shoulder lanes were closed for use and 
HOV-2 lanes were open to all traffic except trucks. 

 
Figure 2.  Diagram of the I-66 Study Section.   

  
 
 

PURPOSE AND SCOPE 
 

 I-66 in Northern Virginia is particularly fraught with incidents.  In 2007, approximately 
2,000 incidents were recorded in the Incident Management System (IMS), 22% of which were 
collisions, 48% were disabled vehicles, 15% were congestion, 6% were road work, and the 
remainder included debris, vehicle fires, and police activity.  (The IMS provided these 
classifications.) The goal of this study was to identify a feasible approach for estimating 
incident-related travel time in near-real time for I-66 in Northern Virginia.  Given the inputs of 
incident location, day, time, and estimates of duration, lane closures and timing, and driver re-
routing by ramp, the adopted approach provided estimates of travel times every 0.2 mile 
upstream of the incident at every minute after the start of the incident and allowed for the 
determination of queue length over time.  The study area focused on a 16-mile eastbound portion 
between US 29 and I-495 using 2007 data.  This section of roadway contained 9 on-ramps and 
10 off-ramps.  In this initial feasibility study, only one type of vehicle was simulated (i.e., trucks 
and HOVs were not treated separately from general personal vehicles).   
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METHODS  
 

 This study determined incident-related queue lengths, travel times from upstream 
locations through the incident location, and queue dissipation.  Incident duration was not part of 
this study.  To attain the overall goal, this study addressed the following objectives: 

 
1. Review existing incident-related travel time estimation techniques. 
2. Develop origin-destination matrices. 
3. Develop methods to model congestion back propagation and queue dissipation based 

on detector data.  
4. Develop methods to calculate travel time. 
5. Examine the feasibility of the developed methods performing in near-real time. 

 
 Input for the modeling system included start time of the incident, clearance time or an 

estimated clearance time (which could be refined later), duration, location, and status of lane 
closure. Outputs of the system were total travel time passing through the incident zone for 
drivers at different locations, traffic flow, average travel speed and some auxiliary information 
such as the travel time for drivers to reach the nearest off-ramp especially when a severe incident 
occurred and people were more likely to exit the freeway prior to reaching the incident.  
 

 The methods employed to accomplish the objectives of this study included six tasks: 
 

1. Literature Review 
2. Collection of Data  
3. Processing of Detector Data  
4. Development of Origin-Destination (OD) Trip Tables 
5. Development of Model(s) 
6. Calibration of Parameters and Application of Model(s). 

 
 

Task 1: Literature Review 
 
 The literature review examined existing models of congestion back propagation and 

queue clearance, incident travel time prediction methods, studies that incorporated detector data, 
and previous work specific to the adopted approach.   

 
 

Task 2: Collection of Data 
 

 Two types of data were needed for this study.  The first was loop detector data for the 
study area for the year 2007.  In particular, station based speed and flow data for every 5-minute 
increment were gathered from a database of detector data.  The second was incident records for 
the corresponding area and time period. 
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Loop Detector Data 
 

 The test site was equipped with 130 detectors on the mainline along with 21 on the 
ramps. The loop detectors on the mainline were spaced approximately 0.5 mile apart. Parallel 
detectors with the same milepost, namely, at the same location of the freeway but on different 
lanes in the same direction, were grouped into logical units called stations.  Detectors on the 
ramps were normally located near the merge or diverge points and detectors on each ramp 
belonged to individual stations.   

 
 The detectors gathered data every minute on speed, volume, and occupancy. Speed at a 

station was a volume weighted speed in miles per hour.  Volume was the number of vehicles 
detected by the detector within the defined time frame.  Occupancy was the percentage of time 
that vehicles were detected by the detector.  Figure 3 shows the station layout on the test site. 
The integers in the figure represented the station identification (ID) and the numbers in the 
parentheses indicated the milepost of the station.  The station ID numbers were the ones used in 
2007 when the data were collected, although station ID numbers have been changed since then. 

 

 
Figure 3. Station Locations on the Test Section. 

 
 The 1-minute raw data were collected directly from the loop detectors by VDOT in non-

delimited flat formats and then translated into a readable format before being stored in the Real-
time Freeway Performance Monitoring System (RFPMS), a Microsoft SQL Server database 
developed by the Virginia Tech Spatial Data Management Lab.  This database assembled a 
history of traffic measurements from all the detectors on I-66 for the last five years. The 1-
minute raw data were preliminarily processed by eliminating abnormal and erroneous data based 
on rules predefined by the database before being aggregated into 5-minute station-level data. The 
aggregated data were used in this study to minimize random fluctuations. Despite preliminary 
cleaning, the 5-minute data required further processing, as described in Task 3.   
 
Incident Data 
 

 Incident data were collected from the IMS developed by the University of Maryland 
CATT Lab and supervised by VDOT.  IMS has collected incident records on all freeways in 
Northern Virginia including I-66, I-496, I-395 and I-95 since 2005. Each incident record 
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contained the incident ID, incident type and subtype, start time, clear time, close time, location, 
lane status (closure or open) over time, and a brief description of the incident.   
 
 

Task 3: Processing of Detector Data 
  

 Since preliminary data processing had been conducted on original 1-minute detector data 
before being transformed into 5-minute station-level data, data processing here refers to system 
level analysis and eliminating inconsistent and abnormal source data, possibly caused by detector 
malfunction. System level analysis, differentiated from the individual level where erroneous data 
were identified on the basis of the relationship between speed, volume and occupancy data from 
a single detector, considered the relations of data among neighboring stations and trends of daily 
volume distribution.  For example, if data from two stations on the same link (a road section 
between two junctions, within which the configuration was uniform), were significantly 
different, the data were further scrutinized and justified based on their consistency.   
  

 The objective of data processing was to compile a complete and representative set of flow 
data for each day of the week representing the normal non-incident daily travel pattern. The data 
set covering all inflow and outflow in the network was generated as a base case for incident 
simulation.  

 
 In previous studies, one specific day was selected as the typical day after considering the 

completeness of the data and justifying if its flow data faithfully followed the day-to-day trend 
(Gomes et al., 2004). However, this method was not suggested for this study due to: (1) no single 
day had absolute complete data; (2) no single day was incident free throughout the test site; and 
(3) flow fluctuation from day to day could not guarantee the representativeness of the data. 

 
 The procedures to compile a representative data set in this study were (1) integrating data 

from the same station, same day of a week (except holidays) and same time of a day into one 
group; (2) eliminating outliers for each group; and (3) averaging flow for each group. Then the 
average flow data of the same day were ordered chronologically and the combination was the 
representative entity used for origin-destination trip estimation for each day of the week. The 
main advantage of this method was that it dramatically reduced the risks of obtaining biased 
representative data but it required more data processing effort. The most challenging part of data 
processing was identifying abnormal data. 

 
 The procedure for data processing was applied to most stations that had good data quality 

and small data variance. For some stations with less reliable data quality or mass loss of data, 
different approaches were utilized, which are indicated in the following procedure.  The detailed 
data processing procedure used in this study is described as follows: 

 
• Step 1: Choosing representative station data for each link. This applied to the 

condition that more than one station was located on a link, which was a road section with 
uniform configuration.  For example, in Figure 3, stations 251, 261, and 271 were located on the 
same link and only data from one station were selected as representative data for that link. 
Selection was based on the comparison among these station data assuming the flows should be 
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close to each other since there was no in- or out-flow within the link. If one station’s flow was 
much smaller than the other two, this station was not selected even if the lower flow was caused 
by downstream congestion and the data were valid. The higher value should be closer to 
theoretical flow rate and incident-free conditions, and if lower flow was used in the OD 
estimation model, the demand would be underestimated. If all the stations had similar data, the 
station in the middle was chosen since the flow was less likely to be influenced by ramps near 
the ends of the link. If a link had only one station on it, this station was selected.  

 
• Step 2: Processing data from station to station. Data from the same station, same day 

of a week (except holidays), and same time of day were integrated into one group. Thus, there 
were at most 52 datum points for each group corresponding to 52 weeks of a year. The detailed 
steps were: 
 

1. eliminating data in the group where flow equaled zero 
2. calculating the average flow and finding the maximum gap between datum points and 

the average  
3. deleting the data with the maximum gap if the gap exceeded a threshold 
4. repeating (2) and (3) until the maximum gap was less than the threshold 
5. calculating average flow of the reduced data group. 

  
The flow might be zero on some ramps at night. However, eliminating these valid zero 

data did not significantly affect the results of flow estimation since the average flow on these 
ramps was low and so was the standard deviation of their flow rates. The results from (5) were 
considered as the representative link volume for a specific time of day and the “normal” 
conditions. The maximum gap and threshold were used here to obtain a data set with higher 
convergence in order to increase the reliability of the results. The thresholds were defined as (1) 
100, if the average volume was greater than 250 veh/5min; (2) 80, if the average was between 
150 and 250 veh/5min; and (3) 50, if the average was less than 150 veh/5min.  The thresholds 
were based on preliminary manual tests on multiple data sets.  Some abnormal data were easily 
observed from the data set; for example, observations that were 200 veh/5 min higher or lower 
than the other values could easily be identified.  Several thresholds were tested and the one that 
excluded all of the abnormal data and did not eliminate too much of the good data was selected.   
These thresholds were then verified by analyzing the least square error, standard deviation, and 
percentage of values excluded from the data set.  The least square error and standard deviation 
were compared to the before conditions. 

 
However, this method was not applicable to some stations with erroneous data caused by 

detector malfunction. These stations were identified and specific methods applied. For example, 
at Station 387, the 5-minute volumes from the first half year double the value from the second 
half year.   Additional scrutiny revealed that the volume in the first half of the year did not vary 
by time of day, which was suspicious, especially considering the values at neighboring ramps.  In 
this case, the first half year of data was eliminated before the method was applied since the data 
were too high to be consistent with downstream and upstream links.  

 
• Step 3: Processing data on a system level.  The average flow data of the same day 

were organized chronologically to cover 24 hours and the combination was considered as the 
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volume on each link.  The basic idea of system-level data calibration was that the inflow should 
be close to outflow for each merge or diverge point.  For example, in Figure 3, the flow at 
Station 91 should be similar to the sum of Station 694 and 101 at the US 29 off-ramp. Similarly, 
Station 111 data should be similar to the sum of Station 101 and 102 at the US 29 on-ramp. On 
the basis of this approach, it was easy to identify erroneous station data, which were replaced 
with an average value calculated from neighboring stations. For example, erroneous data in 
Station 101 could be replaced by [(flow at Station 91 – flow at Station 694) + (flow at Station 
111 – flow at Station 102)] / 2. Apart from using the spatial relations among stations, the daily 
trend was another method to identify abnormal data.  If the flow at one time increased or 
decreased unaccountably (i.e., no incident was recorded) and was much higher or lower than the 
value in its neighboring time steps, the volume was substituted by interpolation from the data in 
neighboring time steps. Reasonable flow fluctuation within the boundary of 100 veh/5min on the 
mainline was not eliminated since it was possibly caused by platoon or queue discharge.  

 
• Step 4: Justifying the data, especially data that has been modified through video. The 

real time images from video cameras were available online from TrafficLand.com (TrafficLand).  
The images did not offer exact flow data but provided a rough idea whether the modified flow 
data were reasonable or not; this was a qualitative assessment to ensure that the data processing 
yielded reasonable results.  
 
 

Task 4: Development of Origin-Destination Trip Tables 
 
 The final flow data from Task 3 were transformed into origin-destination formats 

required for incident modeling using the software package QueensOD.  This software was a 
macroscopic statistical OD estimation model developed by Van Aerde and his colleagues at 
Queens University (Van Aerde & Assoc., 2005) that translated the observed link flows to a set of 
OD matrices.  OD matrices were developed for the full 24 hours of each day of the week, with a 
resolution of 5 minutes.  

 
 These OD matrices should be used for regular traffic days.  Specifically, they should not 

be used for holiday weeks, which might have atypical patterns.  Different OD matrices would be 
required for these days, but the model could be used with these revised inputs. 

 
 

Task 5: Development of Model(s) 
 

 The study required the development of a new simulation model for a few reasons.  First, 
the expense of obtaining real time versions of some existing simulation tools was excessive.  
Second, other simulation tools had proprietary code that would be difficult to tailor to this 
study’s needs.  Finally, the literature indicated that the commonly considered shockwave and 
queuing approaches underestimate freeway travel times.   

 
 Cellular automaton (CA) was the approach selected for further investigation, based on the 

outcomes of Task 1.  This approach showed great promise in studies from Germany.  The model 
was developed based on previous models found in the literature with some modification.  New 
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rules that incorporated some freeway driving behavior that was previously overlooked were 
included in this model.  The model was developed in the C# programming language. 

 
 

Task 6: Calibration of Parameters and Application of Model(s) 
 
 The CA models must reproduce regular (“incident-free”) traffic flow for each day of the 

week; parameters of the model were calibrated to achieve the desired results.  The CA models 
must also reproduce incident conditions where driving behavior may be different from those 
under normal conditions.   

 
 The calibration involved both quantitative and qualitative measures.  For both incident-

free and incident situations, volumes were calibrated using two statistics: mean absolute 
percentage error (MAPE) and GEH (named after its creator).  Equations (1) and (2) provide the 
formulae for these statistics. 

    ∑
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−
=

n

i iobs

isimiobs

Vol
VolVol

n
MAPE

1 ,

,,1     (Eq. 1) 

where 
 

 n = number of time intervals, 
 I = index representing the time, 
 Volobs,i =  observed volume at time i, and 
 Volsim,i = simulated volume at time i  
 
 For a good fit between the observed (detector) values and the simulated values, MAPE 

should be small.  A perfect fit would yield a MAPE value of 0.  Determining what constituted a 
poor value of MAPE was subjective as there is no upper bound.  The threshold established for 
this study is discussed in the results section.   

 
 Similar to the MAPE statistic, the GEH statistic incorporated both the observed volumes 

and the simulated volumes.  GEH was specifically created for traffic analyses and allows scaling 
of the volumes so that freeway sections and ramps could be evaluated with the same “statistic,” 
which was an empirical formula rather than a true statistic. 
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)(2 2
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VolVol
VolVolGEH
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−

=      (Eq. 2) 

 
where the terms were analogous to those described for Equation 1. 

 
 The Highways Agency in the United Kingdom considered GEH statistics of less than 5 

for individual flows for at least 85% of the cases as acceptable for validation (Highways Agency, 
1996).  These criteria for acceptability have been followed by other researchers (e.g., Chu et al., 
2004) and were used in this study as well. 
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 Speed contour plots were used as a visual tool to examine the daily morning congestion 
of the network in terms of initial time and end time of the congestion along with queue length. 
The columns, or x-axis, presented the list of stations on the mainline from upstream to 
downstream and the rows, or y-axis, provided the time of day in 5-minute intervals. The numbers 
in the table represented the average speed for each specific location on the freeway and time of 
day. The speed contour plots could easily identify the location and time of congestion and 
incidents by marking the segments with speed less than normal speed.  The threshold used in this 
study to distinguish between congestion and normal conditions was 45 mph, corresponding to the 
value VDOT’s NRO freeway operations group considered mild congestion.    

 
 Due to the possible oscillation of this information from day to day, reflected by the 

severity of the congestion, a range was set. If the simulation results were located within the 
range, the model was considered to be capable of reproducing the morning bottlenecks.   

 
 The evaluation of incident simulation was mainly based on flow data. MAPE values and 

GEH analysis were used for justifying the models. The flow data with 5-minute resolution 
covered the whole incident duration along with a half hour before the incident and one-half to 1 
hour after the incident clearance, covering the queue dissipation period.  The threshold of MAPE 
values was defined as 20% (see the “Results” section for the justification) and the threshold GEH 
percentage was 85%.  

 
 

RESULTS 
 

Literature Review 
 
 The results of the literature review were divided into two sections.  The first discussed 

models frequently used in the past and a key paper that tested several previous approaches 
against field observations.  According to this paper, queuing theory and shockwave analysis 
underestimated travel time (Yeon and Elefteriadou, 2006).  With this in mind, a relatively new 
microscopic simulation approach, based on cellular automata models was explored.  The second 
part of the literature review focused on the development of CA approaches. 

 
Previous Approaches to Travel Time Estimation 

 
 Several earlier works estimated general travel time from detectors.  For example, Petty 

(1998) developed a methodology to estimate link travel time directly from a single loop detector 
and occupancy data based on the assumption that all vehicles arriving at an upstream point 
during a certain period of time had a common probability distribution of travel time to a 
downstream point.  The distribution of travel time was calculated by minimizing the difference 
between actual output volume and output volume estimated from upstream input flow and its 
travel time distribution.   Coifman (2002) also used individual loop detectors to calculate travel 
time as a function of the headway, vehicle velocity, and speed at capacity, which was derived on 
the basis of linear approximation of the flow-density relationship. The method was reported 
accurate except at changes of traffic streams, which were frequently found on freeways.  Oh et 
al. (2003) based their calculations on section density and flow estimates from point detectors.  
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These previous works were not necessarily capable of capturing the complex dynamics that 
occur during incident scenarios, especially if detectors were widely spaced or conditions between 
detectors were desired. 

 
 Numerous approaches to forecasting travel time under incident conditions have also been 

developed, including statistics-based approaches, such as probabilistic distributions (Giuliano, 
1989; Garib et al., 1997; Sullivan, 1997; Nam and Mannering, 2000), linear regression models 
(Garib et al., 1997; Ozbay and Kachroo, 1999), and time sequential models (Khattak et al., 
1995), decision trees (Ozbay and Kachroo, 1999; Smith and Smith, 2001), Artificial Neural 
Network (ANN) models (Wei and Lee, 2007), and macroscopic and microscopic models. 
Queuing analysis and shockwave models were two commonly used macroscopic models to 
estimate the travel time through a bottleneck (Nam and Drew, 1999; Zhang, 2006; Xia and Chen, 
2007), and  microscopic packages such as VISSIM and PARAMICS were often used to address 
the issue (Park and Qi, 2006; Khan, 2007).   

 
 Statistical analysis, macroscopic calculation and microscopic simulation were the three 

main methods to estimate incident-related travel time.  Statistical approaches typically covered 
the entire incident period and provided average travel time by incident type; these were not 
directly applicable to the current study, due to their general nature.  The macroscopic and 
microscopic models each had advantages along with drawbacks due to their features.  
Macroscopic models considered the whole traffic flow as a “flow of continuous medium based 
on a continuum approach” (Li et al., 2001).  The models focused on the relations between three 
macroscopic parameters, namely, flow, density and average speed. Microscopic traffic 
simulation analyzed traffic flow through detailed representation of individual drivers’ behavior 
(Choudhury, 2005). The disadvantage of macroscopic methods was that they could be too 
generalized for specific situations despite their computational efficiency. Microscopic 
simulation, on the other hand, could reproduce the traffic flow more realistically and precisely, 
however, computational efficiency was sacrificed.  Due to the flexibility and uncertainty of 
incidents, real time travel time forecasting, requiring both accuracy and efficiency, was 
necessary, and the models mentioned above left room for improvements in the incident area.   

 
Macroscopic Approaches 

 
 Macroscopic models were developed on the basis of traffic flow theories to estimate 

travel time in terms of flow, speed and occupancy. Most of these models were based on 
comparison between the inflow and outflow of a specific section in sequential time periods. The 
advantage of these models was their ability to capture the dynamic characteristics of traffic 
(Vanajakshi, 2004).  The macroscopic approaches considered in this review generally focused on 
shock wave theory and queuing theory. 

 
 Historically, shock waves have been used to identify and model the interface between 

two distinct states (i.e., congested and non-congested).  They modeled both the backward 
propagation of queues as well as the dissipation of congestion once a bottleneck was passed.  
Shock waves could be identified using time space diagrams or from density-flow graphs.   
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 In time-space diagrams, vehicle trajectories were plotted (see, for example, Lawson et al., 
1997).   The slope of the trajectory line represented the speed of the vehicle.  As vehicles 
approached the back of a queue, they reduced their speeds (possibly from free-flow speed).  
From the diagram, the upstream free flow state could be distinguished from the queued state 
from the change in slope of the trajectory line.  A line drawn connecting these change points 
among adjacent vehicle trajectories represented the location of the end of the queue as a function 
of time.  The diagram also indicated the speed at which the back of the queue was moving. 
Individual vehicle delay and total time spent in queue could also be determined from the diagram 
(Lawson et al., 1997).   A drawback to using the basic shock wave approach (as just described) 
for incident-related travel time prediction was that individual vehicle trajectories had to be 
plotted.  These disaggregate data were not readily available from detectors, which collected 
aggregate data; thus density-flow graphs were more useful for detector data approaches. 

 
 Muñoz and Daganzo (2003) used detector data and kinematic wave theory to identify 

shocks in traffic flow and examined non-equilibrium flow and the transition zone between 
congested and non-congested conditions during rush hours.  Their detector data indicated that a 
transition zone with decelerating vehicles existed just behind a queue.  From the data, they 
estimated trip times, the speed of the transition propagation, and the amount of time that drivers 
spent in transition. The insights gained from Muñoz and Daganzo’s work suggested that it was 
feasible to use detector data to model the transition into the congested regime and the transition 
into the free-flow regime, at least for recurrent congestion at pre-specified locations as in the 
peak period. 

 
 Another way to avoid constructing vehicle trajectories was to use input-output diagrams 

for queuing theory applications.  Input-output diagrams, also known as cumulative plots (Rakha 
and Zhang, 2005), depicted the relationships between the cumulative number of vehicles and 
time at one upstream point (input/arrival) and one downstream point (output/departure).   The 
arrival A(t) and departure D(t) curves recorded the associated times for each vehicle.  The 
horizontal distance between these two curves for an individual vehicle was the total travel time 
between the two observation points (see Figure 4).  One could also plot the virtual departure 
curve V(t) based on travel at free-flow speeds.  Delay was then the horizontal distance between 
the departure and virtual curves (Lawson et al., 2007).  The authors also introduced a fourth 
curve B(t) to represent the cumulative number of vehicles reaching the back of the queue.  Queue 
length was the vertical distance between B(t) and D(t) and the time spent in the queue was the 
horizontal distance between B(t) and D(t) (Lawson et al., 2007). 
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Figure 4. Queuing Curves (Adapted from Lawson et al., 2007). 

 
Using queuing models, Nam and Drew (1999) estimated vehicles’ travel time under normal 

flow conditions and congested flow conditions separately.  In normal flow conditions, vehicles 
entered and left the section within the time interval concerned, while this was not true for the 
congestion situation.  Based on cumulative flow plots, the authors developed two different 
equations for travel time calculations, one for uncongested and one for congestion conditions.   

 
 Rakha and Zhang (2005) identified three errors in Nam and Drew’s (1998) earlier work 

that compared delay calculated by shockwave and queuing theory approaches.  Rakha and Zhang 
corrected Nam and Drew’s equations and showed that delay computations for shockwave 
analysis and queuing theory were consistent. 

 
 Using Rakha and Zhang’s corrections for queuing analysis, shockwaves, and a third 

technique called rescaled cumulative curves, Yeon and Elefteriadou (2006) examined the 
accuracy of these three methods compared with field-measured travel time.  Yeon and 
Elefteriadou noted that all three approaches had typically been applied to freeway sections 
without entering/exiting ramps.  With the presence of ramps between detectors, the rescaled 
cumulative curves could not be applied.  Although the other two methods could be applied in the 
presence of ramps, the authors concluded that they were inadequate.  Comparison of shockwave 
analysis and queuing theory with field-measured travel time revealed underestimates in certain 
section configurations for congested conditions (Yeon and Elefteriadou, 2006). 

 
 Based on Yeon and Elefteriadou’s (2006) work and their recommendation that alternate 

methods capable of handling ramp considerations be developed for estimating travel time along 
freeways, we considered microscopic approaches, which were described next. 
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Microscopic Approaches 
 
 Car-following (CF) models are classical microscopic models to simulate traffic networks 

and the models were incorporated into several simulation packages such as VISSIM and 
PARAMICS.  Simulation models were frequently used for “what-if” scenarios and to examine 
travel times and queue lengths, but a potential drawback was the computational time.   

 
 Cellular automata models are relatively new methods when compared to CF models, with 

the advantage of high computational speed.  Cellular automaton is a dynamic system with 
discrete and finite features in time and space. “Cellular” pointed out the discrete feature of the 
system while “automaton” implied the feature of self-organization, free of requiring extra 
controls from the outside. Cellular automata were “sufficiently simple to allow detailed 
mathematical analysis, yet sufficiently complex to exhibit a wide variety of complicated 
phenomena” (Wolfram, 1983). The discrete feature enabled CA models to simulate the network 
more efficiently along with all advantages of microscopic models. Moreover, CA models could 
capture the features of observed driving behaviors and translate them into rules. All these 
advantage made CA models promising for real time forecasting. 

 
Cellular Automata Models 
 

 CA models were initially proposed by Von Neumann in 1952 (Ulam, 1952) and 
introduced into the field of transportation by Cremer and Ludwig in 1986 (Cremer and Ludwig, 
1986).  CA models have been widely used to simulate a variety of traffic networks including 
one-way (Nagel and Schreckenberg, 1992; Larraga et al., 2005) and two-way arterials (Simon 
and Gutowitz, 2998; Fouladvand and Lee, 1999), freeways (Hafstein et al., 2004), intersections 
(Brockfeld et al., 2001), roundabouts (Fouladvand et al., 2004), and toll stations (Zhu et al., 
2007), and were capable of reproducing various traffic conditions such as congestion and free 
flow at a microscopic level. CA models specifically applied to freeway traffic are discussed 
further below. 
 
CA Basics 
 

 The CA models separated the roads into a sequence of cells, each of which was either 
occupied by a vehicle or empty. At each time step, a given vehicle remained in its current cell or 
moved forward at a speed determined by the relationships between the given vehicle and 
surrounding vehicles in terms of their relative speed and distance.  The relationships were 
defined by rules. One of the great advantages of CA models was that “the dynamical variables of 
the model were dimensionless, i.e., lengths and positions were expressed in terms of number of 
cells per second and times were in terms of number of seconds” (Hafstein et al., 2004). The 
dimensionless feature simplified the application of the models and improves computational 
efficiency. 

 
 Vehicle updating in CA models was either synchronous or sequential. Synchronous 

updating meant that in each time step all vehicles were updated in parallel; while in sequential 
updating, an update procedure was performed from downstream to upstream.  Each driver was 
assumed to have full information about the behavior of his predecessor in the next time step 
(Knospe et al., 1999) under sequential updating rules, which yielded a higher value of average 
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flow due to a succession of driver overreaction (Jia et al., 2007; Knospe et al., 1999). Therefore, 
most CA models followed synchronous updating rules. 

 
 The boundary conditions in CA models fell into two categories: periodical and open (Jia 

et al., 2007).  According to periodical boundary conditions, the lead vehicles passing through the 
end of the road reentered the system at the beginning of the road. The total number of vehicles 
and density in the system were constant. Under open boundary conditions, new vehicles were 
injected into the beginning of the road with a probability α and the vehicles were deleted from 
the system with a probability β once they reached the end of the road (Jia et al., 2007).  
Periodical boundary rules were normally used when testing the CA model and calibrating its 
parameters with a general purpose, where the roads could be hypothetical.   Open boundary rules 
were more adaptable for realistic road networks. 
 
CA Models of Single Lane Freeways 
 

 Nagel and Schreckenberg (1992) initially presented a single lane CA model (NaSch 
model) for highways and most of the later CA models were developed based on this model with 
additional rules.  The original rules included four steps (Nagel and Schreckenberg, 1992): 

 
1. Acceleration: if a vehicle (n)’s velocity (v) was lower than the maximum speed and 

the distance (dn) to the next downstream car was larger than its desired speed, the 
speed was advanced by one cell/ sec. 

2. Deceleration: if distance dn was less than the vehicle’s speed, the vehicle reduced its 
speed to dn.  (It was implied that dn was divided by 1 second to match the units of 
speed.) 

3. Randomization: the velocity of each vehicle was decreased by one with probability p 
if it was greater than zero. 

4. Car motion: each vehicle was advanced according to its speed. 
 

 Simple as it was, the CA model for traffic flow was able to reproduce some 
characteristics of real traffic, like jam formation (Hafstein et al., 2004).  However, NaSch models 
missed some observed traffic features, such as metastability, synchronized traffic flow, and the 
hysteresis phenomenon.  These deficiencies motivated additional model developments. 

 
 Two models, the TT model and the BJH model were developed to capture metastability 

by introducing slow-to-start behavior.  The first did so by modifying the NaSch model’s 
acceleration step (Takayasu and Takayasu, 1993), and the second added a separate step after the 
NaSch acceleration step (Benjamin et al., 1996).  The idea behind the modified rules of the BJH 
and TT models was to mimic the delay of a car in restarting, i.e., due to “a slow pick-up of 
engine or loss of the driver’s attention” (Schadschneider and Schreckenberg, 1999).  The delay 
caused by slow starting behavior was considered the main reason for metastable status.  

 
 Barlovic et al. (1998) proposed a velocity-dependent-randomization model (VDR model) 

that modified the randomization step of the NaSch model so the probability for random slowing 
was one value if the speed of the vehicle was zero in the previous time step and another value if 
velocity was greater than zero. The other rules remained the same as the NaSch model, and 
similar to the TT and BHJ models, the VDR model was capable of reproducing metastable states. 
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 Li et al. (2001) suggested that the speed of a following vehicle depended not only on the 
distance between itself and the preceding car but also on the anticipated speed of the preceding 
car in the next time step.  The authors confirmed that neglecting this effect underestimated traffic 
speed and flow if simulating real road networks.  Li et al. (2001) proposed a Velocity Effect 
(VE) model and modified step 2 in the NaSch model.  The deceleration rule in the VE model 
stated that the speed of a vehicle was the minimum of (a) the maximum speed, (b) current speed 
plus one, and (c) the gap (with implied division by 1 second) plus the estimated velocity of the 
preceding car at the next time step.  Compared with the NaSch model, the output from the VE 
model was claimed to be consistent with real data (Li et al., 2001). 

 
 Larraga et al. (2005) also considered the speed of the preceding vehicle, but used the 

preceding vehicle’s speed at the same time step rather than the estimated speed at next time step. 
Their deceleration rule involved a parameter representing driver aggressiveness.  The difficulty 
of determining these parameter values for different drivers created problems in applying this 
particular model to real traffic flow analysis (Liu, 2006). 
 

 Also concerned with the effects of preceding vehicles, Knospe et al. (2000) introduced a 
comfortable driving (CD) model that accounted for the effects of brake lights. The main ideas of 
the model were: (1) if the preceding gap was sufficiently large, the driver proceeded at maximum 
speed; (2) with an intermediate gap, the following driver was affected by changes in the 
downstream vehicle’s velocity as indicated by brake lights; (3) with a small gap, drivers adjusted 
their speed for the sake of safety; and (4) the acceleration for a stopped vehicle or a vehicle 
braking in the last time step would be retarded (Knospe et al., 2000).  Moreover, Knospe et al. 
(2000) allowed multiple choices of the safety gap (unlike the VE model, where the safety gap 
was one cell), which facilitated model calibration and led to more realistic results. The model 
proved to be capable of reproducing three phases and hysteresis status (Knospe et al., 2000).      

 
 Jiang and Wu (2003) modified the first step of Knospe’s CD model claiming that the 

drivers were still very sensitive to restart their cars when they had just stopped until they reached 
a certain time. The modified model successfully simulated synchronized flow and the results 
were consistent with real traffic data. 
 
CA Models of Lane Changing 
 

 One significant deficiency of single-lane models was that overtaking was not allowed in 
the system.  CA approaches to multi-lane facilities naturally needed to consider this behavior.  
Lane changing behavior was classified into two categories (Ahmed, 1999): Discretionary Lane 
Changing (DLC) and Mandatory Lane Changing (MLC). DLC was performed when the driver 
perceived that the target lane was better than the current lane, for example, higher speed could be 
achieved by switching. MLC was performed for lane reductions, such as incidents and ramps.  

 
 Lane changing rules could be symmetric or asymmetric (Rickert et al., 1996). Symmetric 

rules were used in systems where lane changing on both sides was permitted while asymmetric 
rules applied to systems where the motivations of lane changing from left to right or from right 
to left were different.  For example, in Germany, vehicles may only pass on the left, and slow 
moving vehicles always drove on the right. However, this was not guaranteed to be the case in 
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the United States. Nagel et al. (1998) pointed out that American drivers usually did not use the 
rightmost lane in order to avoid disturbances from ramps. Furthermore, simple observation 
revealed that some American drivers passed on the right.  Thus, symmetric rules could be more 
useful to describe actual American driving behavior than the asymmetric rules.  

 
 All lane changing rules consisted of two parts: a reason, or trigger criterion, and a safety 

criterion (Chowdhury et al., 1997). The trigger explained why people want to change lanes and a 
safety criterion determined if it was safe for the driver to do so. If both conditions were satisfied, 
lane changing behavior would be taken.  

 
 Rickert et al. (1996) introduced a set of lane changing rules to the NaSch model.  If one 

vehicle was retarded in its current lane, the travel condition in the target lane was better, and lane 
changing would lead to neither collision nor blockage of another vehicles’ way, the vehicle 
would change to the target lane with probability pchange.  The first two conditions were the trigger 
criteria and the second were the safety criteria.  These conditions were adaptable to both 
changing to the left and to the right lane. 

 
 Lane changing for inhomogeneous traffic (e.g., cars and trucks) with different speeds was 

investigated by Chowdhury et al. (1997).  They developed rules that were “symmetric with 
respect to the vehicles as well as with respect to the lanes” (Chowdhury et al., 1997).  The safety 
criteria were the same as above while the trigger criteria were defined as the forward gap in the 
current lane being less than the minimum of the maximum speed and the expected speed for the 
next time step and the forward gap in the target lane being larger than that of the current lane.   

 
 The model generated good results in homogenous traffic systems but had some problems 

in simulating inhomogeneous traffic (Chowdhury et al., 1997; Knospe et al., 1999).  Jia et al. 
(2007) pointed out that the effects of slow vehicles in the system were exaggerated in the model. 
Even a small number of slow vehicles initiated the formation of platoons at low densities and the 
queue would not dissipate after a very long time, which was not the case in reality.  Jia et al. 
(2005) addressed this problem by proposing a two-lane CA model with honk effects.  Jia’s model 
added two rules to the trigger criteria in Chowdhury’s model: (1) the following vehicle honked at 
the leading vehicle due to blockage and (2) the leading vehicle could drive at its desired speed on 
either of the lanes free of collision.  If all of the trigger and safety criteria were met, the slower 
vehicle would change lanes. The results showed that fast vehicles could pass slow vehicles 
quickly at low densities and side effects aroused by slow vehicle were suppressed. 

 
 Li et al. (2006) pointed out that fast vehicles usually exhibited more aggressive lane 

changing behavior when the preceding vehicle was a slow vehicle compared with other cases 
(i.e., the fast vehicle hindered by a fast one, or a slow vehicle hindered by a slow one). Their 
model incorporated rules to allow more aggressive behavior for the faster vehicles and improved 
the simulation of mixed traffic systems.   
 
CA Models of Freeway Ramps 

 
 During roughly the same time period as the development of lane changing rules, CA 

models were extended to include freeway ramps.  Diedrich et al. (2000) implemented the on- and 



  18

off-ramps as connected parts of the lattice where the vehicles might enter or leave the system.  
Their procedure for randomly placing vehicles in a vacant cell on the on ramp was recommended 
for injecting vehicles into the system by Jia et al. (2007).  

 
 Campari et al. (2000) extended CA models to two-lane networks with on and off ramps. 

The study was able to reproduce synchronized flow based on Diedrich’s approach. Ez-Zahraouy 
et al. (2004) also used methods similar to Diedrich’s but with open boundary conditions. 

 
 Jiang et al. (2003) argued that the above models only considered the influence of the 

ramps to the main road but the main road actually influenced the ramps. For example, when the 
density of the main road reached a certain level, it would become a bottleneck for the ramps (Jia 
et al., 2007).  Jiang et al. (2003) adjusted the vehicle updating sequence based on the estimated 
time vehicles on the mainline and the ramp would reach the junction point; the shorter travel 
time indicated the road segment that was updated first. Ties were broken according to distance to 
the junction.  Further ties went to the mainline.  Jiang et al. (2003) further modified their model 
to consider randomization effects in an on-ramp system, but the essential idea was that the ramp 
traffic yielded to the mainline traffic.   

 
 The authors also investigated the on-ramp system where the main road had two lanes.  

The update rules were based on two steps: (1) the vehicles on the main lanes shifted to the left 
according to Chowdhury’s lane changing rules regardless of the on-ramp traffic and (2) vehicles 
in the left lane were updated according to NaSch rules while those in the right follow Jiang’s 
rules (Jiang et al., 2002, 2003).  

 
 Jia et al. (2005) considered the effects of an acceleration lane in an on-ramp system with 

one lane on the main road.  Along the mainline (not including the acceleration lane) and on-
ramp, vehicles were updated according to NaSch models.  In the section containing both the 
mainline and the acceleration lane, which was a two-lane network, the authors proposed 
forbidding the vehicles on the main lane from changing to the accelerating lane (Jia et al., 2005).  

 
 Based on similar rules, Jia et al. (2004) simulated off-ramp systems with a CA model 

with and without an exit lane.  Regardless of the configuration, exiting vehicles changed to the 
right lane and slowed immediately upstream of the off-ramp.  In the case where no exit lane 
existed, exiting vehicles were not permitted to change to the left lane.  In the case where an exit 
lane existed, exiting vehicles already on the exit lane were not allowed to change to the left and 
the through vehicles could not enter the exit lane. For both cases, the exiting vehicles changed to 
the right when the trigger and safety criteria were met.  If an exiting vehicle was not able to 
access the right lane before some given point, it stopped there and waited for an opportunity to 
change lanes. 
 
CA Models of Incidents  
 

 On and off ramps, work zones, accidents, and toll booths could be considered typical 
reasons for the formation of bottlenecks. Bottlenecks reduced the capacity of roads and changed 
driver behavior and thereby the flow pattern. CA models of ramp simulation were discussed in 
the previous section. Here, we mainly discuss CA models proposed for incident simulation. 
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Incidents could be premeditated, like work zones, and accidental such as crashes. The existing 
literature focused more attention on intentional incidents. 

 
 Jia et al. (2003) proposed a model for a two-lane road with a work zone. They focused on 

the upstream section where drivers perceived the work zone and began to change lanes. 
According to the rules, the driver on the blocked lane changed to the free lane if the driving 
situation was at least marginally better than on the blocked lane. Moreover, the lane changing 
behavior should obey safety criteria. The authors also allowed the vehicle on the free lane to 
change to the blocked lane if the vehicle was blocked on its current lane while the neighbor lane 
provided better conditions.  

 
 Nassab et al. (2006) proposed similar lane changing models referring to work zone 

networks. Similar with Jia’s model, the vehicles were not only allowed to change from the 
blocked lane to the free lane but also from the free lane to the blocked lane.  For the first 
situation, the authors adopted Rickert’s lane changing models and for the second situation, the 
authors simply reversed the criterion of the first situation.  

 
 All of these previous studies played a role in the rule determination for the CA model 

developed in this study. 
 

Data Collected 
 

 The detector data were obtained as indicated above.  The incident data for the same time 
period (all of 2007) were also obtained.  In 2007, a total of 1714 incidents occurred on I-66; 
these were categorized in Table 1.  Nearly half of the incidents were disabled vehicles and nearly 
a quarter involved collisions. 
 

Table 1. Incident Categorization. 
Category Collision Disabled 

vehicle 
Road 
Work 

Congestion Debris Vehicle 
Fire 

Other Police 
Activity 

Number 407 842 120 264 362 6 29 10 
Percentage 24% 49% 7% 15% 2% 0.4% 2% 0.6% 

 
 

Processing of Detector Data 
 

 The data processing results are presented in terms of standard deviations and relative 
least square errors, representative daily flow, and scale factors. 
 
Standard Deviation and Relative Least Squares Error  
 

 The convergence of link flow data used to calculate the average flow was important to 
justify the reliability of results since the flows of one location were normally similar from day to 
day (at least for weekdays). In order to quantify the variability in flow data, standard deviation 
(STDEV) and relative least-squares error (LSE) were used.  Relative LSE was computed by 
dividing the average squared error by the average flow volume (Rakha et al., 1998).  
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 Standard deviation represented the absolute variation of the data set while relative LSE 
indicated the relative variation related to its average value.  Relative LSE was more applicable to 
justify a data set with higher average value while STDEV provided more intuitional judgments 
on data sets with lower values. Therefore, in this study, comparison between original data and 
modified data of mainline stations was mainly based on relative LSE since the flows on the 
mainline were very high especially in the morning peak. Comparison of stations on ramps was 
mainly based on the STDEV value. Table 2 lists the average STDEV and relative LSE value for 
each station before and after data processing (before step 3) for the Friday dataset as an example 
(tables for the other days are provided in Appendix B). The stations listed were the selected 
representatives for each link (from step 1). Table 2 also lists the percentage of data that was 
removed from the set (i.e., the percentage considered outside the normal range).  The stations 
selected but not listed lacked complete data.    

 
 Comparison of the “before” and “after” statistics in Table 2 indicated dramatic decreases 

in most cases.  STDEV for mainline stations were over 30 veh/5 min before data processing and 
the value for Station 387 even reached 153. After data processing, all values dropped below 50 
veh/5 min and most were less than 30.  Relative LSE for most stations decreased below 20%, 
which meant the average variance of the data was less than 20% of the mean flow.  The decrease 
of STDEV and LSE for ramp stations was not as dramatic as mainline stations due to the lower 
flow on the ramps. Standard deviations for all stations were less than 20 veh/5 min.  The 
percentage of data eliminated was no more than 20% of the total original data set.  The results 
showed that the link flow came to a satisfactory convergence level after data processing and 
yielded a reliable data set over which the representative flow was averaged. 

 
Table 2. Station Standard Deviation and Relative Least Square Errors Before and After Data Modification. 

Mainline 61 111 121 141 672 161 191 
STDEV Before (veh/5 min) 44.07 44.35 41.27 48.56 37.04 37.83 46.33 
STDEV After (veh/5 min) 26.69 26.51 21.96 28.76 23.53 23.67 28.34 

LSE Before 23.62% 23.47% 26.06% 22.36% 25.95% 24.52% 25.85% 
LSE After 15.10% 14.88% 16.32% 13.71% 16.56% 15.32% 16.36% 
Delete% 4.89% 5.05% 4.78% 5.23% 3.88% 3.79% 5.72% 
Mainline 211 221 231 261 291 351  

STDEV Before (veh/5 min) 53.01 38.79 58.58 65.46 48.85 52.96  
STDEV After (veh/5 min) 37.25 24.23 30.65 30.31 28.21 30.29  

LSE Before 31.16% 23.55% 21.47% 25.54% 22.86% 21.58%  
LSE After 21.69% 14.55% 11.67% 12.97% 13.67% 12.70%  
Delete% 11.41% 4.04% 6.50% 8.03% 5.34% 6.13%  
Ramp 694 102 122 123 162 173 212 

STDEV Before (veh/5 min) 74.10 8.01 13.60 19.78 9.22 5.83 9.59 
STDEV After (veh/5 min) 14.70 7.10 9.70 16.10 8.39 5.08 6.73 

LSE Before 92.68% 35.92% 31.55% 23.72% 31.50% 44.51% 46.43% 
LSE After 54.36% 32.79% 24.79% 19.55% 29.53% 44.22% 42.97% 
Delete% 34.92% 0.78% 3.08% 2.24% 0.92% 0.05% 0.96% 
Ramp 623 222 273 342 386 388  

STDEV Before (veh/5 min) 7.01 28.20 7.83 14.00 43.19 18.89  
STDEV After (veh/5 min) 5.11 19.17 6.90 10.71 11.26 7.55  

LSE Before 50.95% 23.28% 37.90% 30.20% 55.81% 73.15%  
LSE After 50.58% 17.74% 36.95% 28.13% 25.62% 36.61%  
Delete% 0.09% 2.80% 0.29% 1.06% 3.41% 4.34%  
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Representative Daily Flow 
 

 The flow patterns between weekends and weekdays were different. On weekdays, the 
flow increased dramatically in the morning peak period and dropped to about half in the 
afternoon.  On weekends, however, plots from all stations showed that the flow gradually 
increased in the morning and reached the apex in the afternoon.  Flow at stations near I-495 
showed differences from other stations located to the west.  In particular, an abrupt drop in flow 
occurred after 6 a.m. on weekdays, due to HOV restrictions east of I-495.   

 
Scale Factors 
 

 Scale factors, defined as the ratio of the total inflow of the system to the total outflow for 
each given interval, could be used to identify possible problems with real data (Gomes et al., 
2004). The scale factor was expected to fall within 10% of 1.00 for an incident-free condition 
and the average over a day should be close to 1.00 (Gomes et al., 2004). 

 
 For this study, the scale factors around midnight for all days of the week were relatively 

low because the absolute flow value was small and the quotient of two small values exaggerated 
the difference between the numerator and denominator. On the other hand, the scale factors were 
relatively high (approximately 1.1) from 4:00 to 6:00 a.m. for weekdays and 8:00 to 10:00 a.m. 
(0.95-1.08) for all days due to the morning congestion. By and large, the scale factors were 
within the reasonable range, justifying the calibrated link flow and qualifying the data as inputs 
for OD estimation. 

 
Origin-Destination Trip Tables 

 
 QueensOD was used to convert the on- and off-ramp flow data into a sequence of 2016 

OD matrices for an entire week – 288 for each day: one for each 5-minute time interval in the 
24-hour period. The dimension of each matrix was 21*21 (10 origins and 11 destinations).  

 
 Volumes calculated from OD tables were compared with loop detector data to justify the 

assignment results and evaluate the performance of QueensOD.  Figure 5 shows a sample of the 
results for four locations and presents their volumes from OD tables and from detectors.  

 
 As can be seen in Figure 5, the volumes calculated from OD tables matched the detector 

flow data very well. Table 3 presents the average and variance of volume difference for all of the 
ramps on Friday as an example.  As indicated in the table, the variance of volume difference 
between OD tables and loop detectors was within the range of 20 veh*veh/5 min and the average 
difference was no more than 5 veh/5 min. The difference between volumes of these two sources 
was within a small scope, indicating QueensOD was consistent with the detector data.   Data 
from other days also showed a good match between the two sources. 
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Figure 5. Comparison of Volumes from the Estimated OD Tables and Loop Detectors. 

 
Table 3. Mean and Variance of Gap Volume between OD Tables and Link Flow (Friday). 

 I-66 
On 

US29 
Off 

US29 
On 

SR28 
Off 

SR28 
On 

SR7100 
Off 

Stringfellow 
HOV On 

SR7100 
On 

Monument 
HOV On 

US50 
SB Off

US50 
NB Off

Average 
(veh/ 5 
min) 1 0 1 3 1 1 1 1 1 2 2 

Variance 
(veh*veh / 
5 min) 17 2 3 11 13 10 2 5 1 11 4 

  
US50 
On 

SR123 
Off 

SR123 
On 

SR243 
Off 

SR243 
On 

I-495 SB 
Off 

I-495 NB  
Off 

I-495 NB 
HOV Off

I-495      
On 

I-66 
Off   

Average 
(veh/ 5 
min) 4 4 5 3 0 1 2 3 2 4   
Variance 
(veh*veh / 
5 min) 19 8 17 13 8 4 4 17 2 14   
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Model Development 
 

 Although existing microscopic and mesoscopic simulation packages were capable of 
precisely simulating traffic networks, the run times, along with the difficulty in setting some 
features or making some changes in the software, excluded them as ideal tools for this study.   

 
 The CA model developed for this study derived many of its rules from the previous 

works mentioned in the Task 1 results.  In particular, symmetric lane changing rules were 
employed with both triggers and safety criteria.  Other rules based on the previous studies related 
to slow-to-start parameters and the basic speed oscillation parameter (P).  Innovative features 
developed for this study include the incorporation of lane changing aggressiveness parameters 
and speed oscillation parameters near on and off ramps.  Models simulating unplanned incidents 
were not found in the literature; as such, this was a further point of departure for this study. 

 
 In this initial study, only one type of vehicle (the personal vehicle) was considered.  

Vehicles were not designated HOV or low occupancy at this time.  For incident scenarios with 
blocked lanes, VDOT might remove the HOV restriction and drivers might violate the restriction 
when congestion is significant. 

 
Overview 

 
 The model kept track of every vehicle in the network, specifically their individual speeds 

and locations. The inputs to the model were the OD tables from Task 4 and the network.  The 
study area network was converted into cells of 7.5 m in length and a lane wide. 

 
 For near-real time applications, the network status can be saved every 5 minutes, 

including vehicles’ locations, speeds, and destinations.  Once the initial data were entered into 
the system, we could directly navigate to the traffic network status with the nearest timeframe 
and load the corresponding network. For example, if the accident occurred at 5:32 p.m., the 
system would automatically load the network recorded at 5:30 p.m. from which the simulation 
would begin. Based on the loaded network when vehicles have distributed according to average 
conditions, incident CA models could directly be applied here without taking time to run the 
model from the beginning of the 24-hour period representing that day. This approach saved 
computational time and thus aided near-real time simulation.  

 
 The travel time information was extracted from the model by considering all vehicles, the 

locations of which were recorded at each time step. Vehicles’ travel times under incident 
conditions were affected by two factors: distance from the downstream edge of the incident zone, 
denoted by x , and elapsed time since the beginning of the incident, denoted by t . The 
corresponding travel time at location x  at time t  was averaged over data from vehicles that were 
located between  x x− Δ  and x during the time span from t t− Δ  to t .  Small values of tΔ  and 

xΔ provided precise information of travel time. In this study, tΔ  was set as 1 minute and xΔ was 
0.2 mile.   

 



  24

 Queue dissipation was reflected in speed changes.  When the speeds returned to normal 
after an incident, the queue had dissipated.  The queue length could be tracked based on the 
vehicles or interpreted from speed contour plots. 
 
Simulation Setup 
 

 The length for each cell was 7.5 m (24.6 ft), which was the average length occupied by 
one vehicle in a complete jam condition (Nagel and Schreckenberg, 1992).   Each cell was 
occupied by one vehicle or empty.  The maximum speed defined here was 4 cells/sec (67 mph), 
rather than 5 cells/sec (84 mph) normally adopted in previous studies. Since the speed limit of 
the test site was 55 mph and the average free flow speed observed was 65 mph, 4 cells/sec was 
consistent with realistic conditions.  The time step was one second.  

 
 The notation is visually represented in Figure 6. The large “X” indicated the given 

vehicle to which the measurements pertained and a smaller “x” indicated another vehicle. 

 
Figure 6. Illustration of CA Notation. 

( )nv t : speed of given vehicle n  at time t , in units of cells/second; ( )1nv t+ : speed of leading vehicle 1n +  at 

time t , in units of cells/second; ( )1nv t− : speed of following vehicle 1n −  at time t , in units of cells/second; 

( ),front otherv t : speed of leading vehicle in the neighboring lane at time t , in units of cells/second; otherbackv , : 

speed of following vehicle in the neighboring lane at time t , in units of cells/second; ( )nd t : distance between 

given vehicle and its leading vehicle at time t , in units of cells; ( ),n otherd t : distance between given vehicle 

and its leading vehicle in the neighboring lane at time t , in units of cells; ( ),n backd t : distance between given 
vehicle and its following vehicle in the neighboring lane at time t , in units of cells. 

 
 The distance between the given vehicle and its following vehicle 1n −  was not given 

specific notation since it could be expressed as ( )1nd t− . 
 
 The model also included look-back distance, look-ahead distance, and ramp influence 

zones.  The look-back distance applied to areas near off-ramps where the appropriate exiting 
vehicles changed lanes in order to reach their intended off-ramps.  This distance was 60 cells 
(450 m or 0.28 mi) and essentially represented the part of the network where the exiting vehicles 
started moving to the right lane in preparation for exiting.  The look-ahead distance applied to 
bottleneck sections with lane reductions where the vehicles on a blocked or disappearing lane 
began switching to other lanes.  This distance was 30 cells (225 m or 0.14 mi) for this model.  
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Finally, the ramp influence zones, as defined in the Highway Capacity Manual (Transportation 
Research Board, 2000) were the areas where merging and diverging vehicles affected the 
mainline flow and were 1500 ft (457.2 m) long.  In this model, the on-ramp influence zone was 
60 cells (1476 ft) from the merge point.  The off-ramp influence zone covered the 60 cells 
upstream from the diverge point, equivalent to the look-back distance, and the freeway section 
with a deceleration lane since speed oscillation in this region could result in lane changes.  
Figure 7 illustrates the influence zone and look-back distance. 
 

 Since the network contained several types of sections and behavior was expected to vary 
among the sections, a set of indicators was developed to discriminate among the vehicles under 
the different influences.  Table 4 summarizes the different types of sections and their indicators. 

 

 
Figure 7. Off-Ramp Influence Zone and Look-Back Distance Illustration. 

 
Table 4. Freeway Section Indicators. 
Freeway Section Indicator

Shoulder lane -5
Look-ahead distance -4

On-ramp influence zone -3
No vehicle permission zone -2

Acceleration lane on-ramp ID
Off-ramp influence zone off-ramp ID

All other sections -1
 
 To simplify the division of the 16 mile long network into cells, the entire mainline of the 

network was initially considered to contain six lanes, a left entrance/exit lane, four main lanes 
(which includes the HOV and shoulder lanes in the appropriate sections), and a right 
entrance/exit lane.  Then, cells that did not exist in reality were coded with a “-2.”  This indicator 
was also applied to other sections where vehicles were not permitted, such as incident zones and 
the shoulder lane during its closed time.  The indicators also played a role in lane changing, 
which was described as part of the model in the next section. 

 
CA Base Model 
 
Initializing the System 
 

 The network was empty at the beginning of a simulation.  The open boundary condition 
was applied here to initialize the system and inject vehicles into the network. The probability for 
a vehicle to enter the system in one time step was α, defined as total volume divided by the 
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corresponding time interval.  For example, if the volume observed to enter the system of one lane 
was 150 veh/5 min, the value of α equaled 150/(5*60) = 50%.  The vehicle would be injected 
randomly into one of the western most first four cells, corresponding to the farthest location that 
it could reach in one time step, only if these cells were all empty.  However, if the first four cells 
already contained some vehicles, the system navigated to the location of the last vehicle and as 
long as the first cell behind it was empty, a vehicle was injected into any cell upstream of the last 
vehicle.  New vehicles were assigned a lane according to the percentages estimated from detector 
data: approximately 20% to both the leftmost and rightmost lanes and approximately 30% to 
each of the middle lanes.  For vehicles that entered the network from on-ramps, the same 
injection procedure of searching for empty cells was followed.  The initial speeds set for all the 
vehicles entering the mainline were the maximum speed (4 cells/sec) while 3 cells/sec was 
applied to those from on-ramps considering that vehicles from on-ramps should have lower 
initial speeds.   

 
 The destination of the new injected vehicle was determined based on volume-weighted 

percentage, which was calculated from OD matrices. For example, a demand of 100 vehicles 
from one origin had two destinations: 30 vehicles would go to destination 1 and the remaining 70 
would go to destination 2. A vehicle would choose destination 1 and 2 with probability 30% and 
70%, respectively.   The vehicle was given an indicator representing its origin and destination. 

 
Updating Vehicles 
 

 The updating rules were based on NaSch models (Nagel and Schreckenberg, 1992) and 
Chowdhury’s lane changing models (Chowdhury et al., 1997) while some modifications (as 
outlined at the beginning of this task’s results) were made to be more consistent with the study 
area. The lane changing models were incorporated into the NaSch four-step model and made the 
total updating steps into five, which are described in detail below.  In the following steps, all the 
values at time t-1 were known and the speed and new location of the given vehicle were found at 
the current time step t.  The initial value of vn(t) was the same as vn(t-1) and was updated from 
step to step.  Thus, vn(t) at the beginning of each step was the result from the previous step and 
the value obtained in the last step was the final speed of vehicle n at time t.  

 
•  Step 1: Acceleration.  If the vehicle’s speed in the last time step was less than the 

maximum speed vmax, the vehicle increased its speed by 1 cell/sec in the current time step. The 
rule was expressed as: 
 

  If ( ) max1nv t v− < , then ( ) ( )( )maxmin 1 1,n nv t v t v→ − + .  
 

The minimum could be considered the desired speed for the vehicle in the current time step. 
 

• Step 2: Lane Changing.  Lane changing behavior was classified into discretionary and 
mandatory. Vehicles changing from on-ramps to the mainline, from the mainline to intended off-
ramps, or one main lane to another near lane reduction sections fell into the mandatory lane 
changing category.  Other cases where lane changing was not necessarily required were 
considered discretionary.    
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The given vehicle changed lanes with probability Pchange,dis (probability for discretionary 
lane changing) if the following conditions were met:  

 
Trigger criteria:  
 
1. the gap in front was less than the desired speed of given vehicle 
 
 ( ) ( )n nd t v t<  
 
2. the front gap in the neighboring lane was greater than current lane 
 ( ) ( ),n other nd t d t>  
 
Safety criteria:  
 
3. the neighboring site of the given vehicle n was empty 
 
4. the back gap in the neighboring lane was greater than or equal to the following 
      vehicle’s speed at time 1t −  
 
 ( ) ( ), , 1n back back otherd t v t≥ −  
 

 Note that the comparison of distance and speed was allowed by the implied 
multiplication of speed by the time increment of 1 second. 
 
 The parameter Pchange,dis  discriminated between the aggressive and less aggressive 
drivers.  

 
The last criterion was less restricted compared to Chowdhury’s  model. Here, if the 

leading vehicle thought that changing lanes would not reduce the speed of the following vehicle 
in the target lane, it could switch.  This was an indirect way to incorporate the effect of turning 
signals into the model.   Therefore, discretionary lane changing behavior was more freely used 
here and the frequency should be higher compared to Chowdhury’s models given the same lane 
changing probability.  

 
Mandatory lane changing behavior was more aggressive than the discretionary type, 

thereby following less restrictive rules. For vehicles to enter the mainline from an on-ramp 
acceleration lane, to reach the intended off-ramps from the freeway lanes, and to pass through 
lane reduction sections, they changed to their target lane with probability Pchange,man if (1) the 
speed of given vehicle would drop by less than k cells/sec in the current time step; and (2) the 
speed of the following vehicle in the target lane would drop by less than b cells/sec in the current 
step.  The criteria were expressed as: 

 

 ( ) ( ), 1n other nd t v t k≥ − −  and ( ) ( ), , 1n back back otherd t v t b≥ − −  
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(Note: the comparison of distance and speed was permitted by the implied multiplication 
of speed by 1 second.) 

 
Pchange,man represented the probability of mandatory lane changing, which should be 

greater than Pchange,dis. The parameters k and b were the maximum speed reduction that the given 
vehicle and the following vehicle could tolerate because of lane changing behavior.  Higher 
values led to higher frequency of lane changing maneuvers. These two parameters were 
calibrated in the next task. This rule reflected the fact that vehicles were more likely to yield to 
those vehicles that had to change lanes. For example, when vehicles got close to a bottleneck 
with lane reduction, vehicles on the unblocked lane would often show courtesy to those on the 
blocked lane in the United States.  

 
A specific mandatory lane changing rule was applied to vehicles on the shoulder lane 

when the lane was closed (i.e., vehicles that were on the lane when it was open just prior to its 
closure).  This rule kept the model from losing vehicles when the lane status switched or causing 
excessive congestion.  The closed shoulder lane in the off-peak was treated as a special area 
where vehicles were permitted but forced to leave as soon as possible.  Aggressive lane changing 
rules were used here: a vehicle on the closed shoulder lane changed to the main lane if there was 
at least one empty cell in the forward and backward directions in the target lane.  The rule was 
expressed as: 

 
( ), 1n otherd t ≥  and ( ), 1n backd t ≥  

 
This rule forced vehicles to leave the closed shoulder lane aggressively but without 

causing severe congestion.  Once the vehicle left the shoulder lane, it was not permitted to return.  
However, if the vehicle could not change lanes according to the rule, it continued on the lane 
until it met the criteria.   

 
The lane change direction (left or right) was based on the vehicle’s location.  The rules 

that determined the direction were: 
 
1. If the vehicle was on a right acceleration lane, the lane change direction was left. 
2. If the vehicle was on a left acceleration lane, the lane change direction was right. 
3. If a vehicle was within the look-back distance of its intended off-ramp, which was on 

the right side, the vehicle changed lanes to the right; if the off-ramp was on the left, 
the vehicle changed lanes to the left until it reached the exit lane. 

4. If a vehicle was within the look-ahead distance of a blocked lane, the vehicle moved 
toward an unblocked lane (either right or left) until it reached a free lane. 

5. If a vehicle was on the shoulder lane, the lane change direction was left since the 
shoulder lane was on the right. 

6. A vehicle was not permitted to change to acceleration lanes, exit lanes not pertaining 
to its destination, shoulder lanes during the closed period, or any road segment 
indicated as “-2.” 

7. On uniform freeway sections (indicated by “-1”), with no ramps or incidents, the 
vehicle could change to either left or right lanes (provided such a lane exists). 
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It was possible for the above rules to conflict when an exiting vehicle within the look-
back distance encountered a blocked lane section, as in Figure 8.  While the exiting vehicle 
should move to the right, the blocked lane effect was more critical than moving to the right.  
Therefore, the vehicle went around the blocked section by changing lanes to the left and then 
moved to the right to reach the exit ramp. 

 
Figure 8.  Lane Changing Illustration. 

 
Once the lane changing criteria were met, the vehicle’s location was changed from its 

current lane to the target one.  Lane changing behavior was updated sequentially, from 
downstream to upstream, consistent with the fact that the following vehicle would make a lane 
change decision considering its leading vehicle’s behavior. The updating sequence indirectly 
incorporated the interaction between leading and following vehicles.   

 
• Step 3: Deceleration.  If the desired speed of vehicle n exceeded the forward gap, the 

vehicle would reduce its speed to the gap / 1 second. The rule was expressed as: 
  If ( ) ( )n nd t v t< , then ( ) ( )n nv t d t→ / 1 sec. 
 

• Step 4: Randomization.  This step decreased a vehicle’s speed by 1 cell/sec with a 
certain probability considering possible oscillations on the freeway. The rule was expressed as: 
 
  ( ) ( )( )max 1,0n nv t v t→ −   
 

Six probabilities were defined in this study considering the different probabilities in 
several conditions, which were: 

 
1. P0: if the speed of vehicle n at time t-1 was zero and its forward gap at time t was 1. 
2. P00: if the speed of vehicle n at time t-1 was zero and its forward gap at time t was 

greater than 1.  
3. Ponramp: if the vehicle was in an on-ramp influence zone. 
4. Pofframp: if the exiting vehicle was in an off-ramp influence zone. 
5. Pfollowing: if the brake lights of the leading vehicle were on. 
6. P: in all other circumstances. 

 
P0 and P00 were used to mimic the “slow-to-start” behavior caused by the reaction time 

taken to restart stopped vehicles.  The adoption of P00 avoided excessive reaction time since if 
the vehicles had taken “slow-to-start” rules in the last time step, the vehicle should move forward 
in the current time despite the possibility that some drivers took more time to start their vehicles. 
Thus, the value of P0 should be high and P00 was small.  
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Ponramp and Pofframp reflected the possible oscillation in ramp influence areas that were 
defined according to the Highway Capacity Manual (Transportation Research Board, 2000).  In 
the study, specific values were assigned to four bottlenecks in the morning congestion, which 
were presented as _ 1offrampP B , _ 2offrampP B ,  _ 3onrampP B and _ 4onrampP B . The rest of the on-
ramps and off-ramps used uniform onrampP  and offrampP  values. 

 
Pfollowing accounted for the effect of brake lights of leading vehicles.  If the front vehicle 

within the distance of dfollowing had brake lights on, the following vehicle was more likely to 
reduce its speed to avoid stopping abruptly. The parameter dfollowing was the threshold distance in 
which the brake lights of the leading vehicle affected the following vehicles.  If the vehicles were 
under both effects of Ponramp and Pfollowing or Pofframp and Pfollowing, the higher one was selected. The 
brake lights would turn on if (1) the vehicle was stopped or (2) the speed in the current time step 
was less than that in the previous time step. 

 
P was applied to all other normal conditions where vehicles were driven on a uniform 

section with no ramps and lane reductions. 
 
• Step 5: Car motion.  The vehicles advanced with their speed obtained from the 

previous steps. If a vehicle left the system, it was deleted from the network. 
 
After one loop of updating existing vehicles in the system at one time step, new vehicles 

were injected with probability determined by the volume as described in the “initializing the 
system” section. 
 
CA Incident Models 
 

 When an incident happens, some or all lanes are blocked, leading to frequent lane 
changing and vehicle rerouting. Vehicles on the blocked lane change to an unblocked lane to 
pass through the bottleneck or they could leave the freeway from the nearest off-ramps instead of 
their intended ones to avoid the bottleneck. Moreover, input flows from the upstream on-ramps 
nearest the bottleneck would decrease. 
 

 In the incident influence zone, defined as sections upstream of the incident location, only 
vehicles in the blocked lane were allowed to change to an unblocked lane and the reverse 
situation was not permitted. The lane change behavior was conducted with probability Pchange,man 
given that it would bring about b cells/sec speed reduction of the following vehicle in the target 
lane. The criterion was expressed as: 

 

     ( ) ( ), , 1n back back otherd t v t b≥ − −  
 

 This lane changing behavior without considering the speed reduction of the given vehicle 
itself was less restricted when compared to those near ramps since changing lanes instead of 
speeding was a higher priority for drivers blocked near bottlenecks.  The probability used here 
was the mandatory lane changing probability. 
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 Vehicle rerouting rates were the other concern.  The rerouting decisions made by drivers 
were assumed to be mainly determined by their judgments on capacity reduction at the 
bottleneck, which affected their speeds approaching and passing through the bottleneck. In this 
model, the rerouting choice was represented by a probability that was determined by the number 
of lanes blocked.  Prerouting_all and Prerouting_part  denoted the rerouting probabilities when all lanes 
and only some lanes were blocked, respectively.  The parameter Prerouting_all was close to 1.0 or 
equal to 1.0.  Meanwhile, probabilities Pre_onramp_all and Pre_onramp_part were set to represent the 
possible flow reduction from the nearest onramps when all or some of the lanes were closed, 
respectively.   

 
Parameter Calibration and Model Application 

 
 For the purposes of this study, a MAPE value of 20% or less was considered acceptable 

based on the average MAPE value calculated for nine stations on 30 days between 5:00 a.m. and 
11:00 a.m. with a resolution of 5 minutes shown in Table 5.  In the calculation, the detector data 
represented the observed volumes and the representative flow corresponding to the OD matrix 
was the simulated volume.  The chosen threshold accounted for normal flow fluctuations. 

 
Table 5. Average MAPE Value Comparing 30 Days of Detector Data and the Representative Flow. 

Station 61 111 141 161 191 231 261 291 351 Average
MAPE 17.30% 16.73% 16.16% 16.36% 19.50% 14.19% 16.76% 16.41% 15.50% 16.55% 

 
 Simulation models need to reproduce recurring congestion as well as capture incident 

effects.  Parameter calibration was based on MAPE and GEH statistics and comparison of speed 
contour plots between field data and simulation results. Congestion and incidents were identified 
by marking cells with average speed less than 45 mph in speed contour plots. Parameters of 
incident-free conditions were calibrated first followed by calibration of incident related 
parameters.  Before calibration, the effects of changing individual parameters were examined. 

 
Identifying Recurring Congestion Bottlenecks 
 

 Recurring congestion emerged on the study area every weekday during the morning peak 
period.  Figure 9 shows a sample congestion pattern where average vehicle speed dropped below 
45 mph from 5:40 a.m. to 10:35 a.m. throughout the whole test site. From this and other similar 
contour plots, four distinct bottlenecks were identified, which were (listed from downstream to 
upstream): 

 
• Bottleneck 1: upstream of Station 361 (near I-495 southbound off-ramp) 
• Bottleneck 2: upstream of Station 581 (near SR243 off-ramp) 
• Bottleneck 3: upstream of Station 231 (near US50 on-ramp) 
• Bottleneck 4: upstream of Station 131 (near SR28 on-ramp) 
 

 Bottleneck 3 experienced the earliest congestion on weekdays at about 6:00 a.m. and 
ended at about 9:00 a.m. Congestion in bottleneck 4 started at about 6:30 a.m. and ended at 9:00 
a.m. Congestion in bottleneck 1 began at 7:00 a.m. and ended at about 10:30 a.m. Congestion in 
bottleneck 2 started at 7:30 and ended at about 9:35. The start and end time of congestion at each 
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bottleneck was not exactly the same from day to day but the time oscillation was normally within 
one-half hour, depending on the severity of the congestion. Queues spilling back on the mainline 
can clearly be seen in the figure, where the long stretch of the queue indicated the heavy 
congestion on I-66 eastbound in the morning peak.   

 

 
Figure 9. Speed Contour for Morning Peak of April 25, 2007, Wednesday. 

 
 Among the four identified bottlenecks, two were caused by off-ramps (bottlenecks 1 and 

2) and the other two were caused by on-ramps (bottlenecks 3 and 4).  Reasons for congestion at 
each bottleneck were as follows: 

 
• Bottleneck 1: This bottleneck was near the I-495 southbound off-ramp. The reason for 

congestion was the high volume of vehicles leaving I-66 on the off-ramps for I-495, 
possibly congestion on I-495, proximity to the Tyson’s Corner business area, and lane 
reductions near the off-ramps, bringing about higher frequencies of lane changing 
behavior and queues spilling back. Due to the HOV restrictions on I-66 inside I-495 
from 5:30 a.m. to 10:00 a.m., most vehicles and trucks had to leave I-66 via three off-
ramps at I-495, the total volume of which was 350 veh/5min in the morning peak.  

 
• Bottleneck 2: This bottleneck was near the SR243 off-ramp. The reason was quite 

similar with the cause of congestion at bottleneck 1. In the morning peak, the 
localized flow on the mainline arrived at 600 veh/5 min and the volume taking the 
SR243 off-ramp reached 150 veh/5 min, creating merging congestion on both the 
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mainline and ramp.  This exit connected travelers to the western most Metro station 
for the orange line. 

 
• Bottleneck 3: This bottleneck was upstream of the US50 on-ramp, indicating that the 

congestion was caused by the high volume from on-ramps and merging behavior. The 
mainline flow was about 500 veh/5 min in morning rush hour and the flow from on-
ramps reached over 200 veh/5 min.  

 
• Bottleneck 4: This bottleneck was upstream of the SR28 on-ramp and the cause was 

the same with bottleneck 3. The mainline flow was about 450 veh/5 min in morning 
rush hour and the flow from onramps reached 150 veh/5 min.  

 
 Speed adjusting by the drivers when perceiving high flow on the mainline and ramps was 

an indirect reason leading to congestion. High volumes on the road or from ramps increased the 
likelihood of speed reduction and oscillation near the ramp sections since drivers usually slowed 
down for the sake of cautiousness. The speed oscillation zone was known as the influence area, 
defined in the Highway Capacity Manual (Transportation Research Board, 2000). Identification 
of the influence zone and recurring congestion area guided later model development. 
 
Parameter Examination 
 

 Fifteen parameters needed to be calibrated for the model.  The range of each parameter 
and its effects on reproducing the recurring bottlenecks are discussed below.  The parameter 
values that were treated as constants while the sensitivity to a particular parameter was tested are 
presented in Table 6. 

 
Table 6. Constants for Parameter Sensitivity Analysis. 

Parameter Value Parameter Value 

0P  0.8 
offrampP  0.1 

00P  0.1 _ 1offrampP B  0.3 

P  0.1 _ 2offrampP B  0.3 

followingP  0.4 
onrampP  0 

followingd  8 _ 3onrampP B  0.1 

k  2 _ 4onrampP B  0.25 

b  1 
,change manP  0.9 

  
,change disP  0.5 

 
Slow-to-Start Parameters 

 
 Two parameters 0P  and 00P , used to mimic the slow to start driving behavior, affected 

the driver’s reaction time to start his vehicle from stopped.  The ranges for 0P  and 00P  were [0.6, 
0.8] and [0.1, 0.2], respectively.  Figure 10 presented the speed contour plots for the range of 0P  
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and Table 7 presented the GEH and MAPE statistics calculated against the representative flows 
used in the OD matrix.  Figure 11 and Table 8 presented the corresponding results for 00P . 

 
 Judging from Figure 10, 0P  affected the congestion levels.  Higher values of this 

parameter caused greater amounts of congestion, as reflected in speed reductions.  However, the 
effect on flow was relatively minimal since the MAPE and GEH statistics were all within the 
established thresholds. 

 

 
Figure 10. Speed Contour Plots of Morning Congestion for P0. 

 
Table 7. MAPE and GEH Analysis on Morning Congestion with Different 0P .  
 Station ID 

0 0.6P =  61* 111 141 161 191 231 261 291 351 

MAPE 5.0% 5.1% 5.6% 6.2% 5.6% 6.8% 8.8% 8.2% 8.2% 
GEH% 100.0% 100.0% 100.0% 100.0% 100.0% 96.0% 96.0% 98.7% 98.7% 

0 0.7P =  61 111 141 161 191 231 261 291 351 

MAPE 5.1% 6.4% 6.7% 7.5% 8.5% 8.7% 9.7% 10.4% 9.4% 
GEH% 100.0% 98.7% 100.0% 100.0% 96.0% 93.3% 93.3% 94.7% 97.3% 

0 0.8P =  61 111 141 161 191 231 261 291 351 

MAPE 7.5% 8.6% 8.3% 11.1% 11.3% 10.7% 11.8% 10.6% 10.1% 
GEH 98.7% 96.0% 96.0% 94.7% 96.0% 86.7% 90.7% 94.7% 100.0% 

*Stations 61, 111 and 141 were located with the influence of bottleneck 4 and Stations 161, 191 and 231 reflect 
the bottleneck 3. Stations 261 and 291 were affected by bottleneck 2 and Station 351 represents the bottleneck 1.  
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Figure 11. Speed Contour Plots of Morning Congestion for P00.  

 
 As seen from Figure 11, even when P00 took the value 0, four bottlenecks were 

identifiable.  Higher values of this parameter caused greater congestion and average speed 
reductions, which confirmed intuition given the definition of this parameter.  The effects on flow 
were also important, as shown in Table 8.  At the highest value considered, the GEH statistics 
exceeded the acceptable threshold at five out of nine stations; however, the MAPE threshold was 
not exceeded. 
 

 0P  and 00P  affected the congestion duration and queue length. Bottleneck 3 (second from 
the left) and bottleneck 4 (leftmost) were more sensitive to these two parameters. The queue 
spillback distance extended to two more stations in Bottleneck 4 when 0P  increased from 0.6 to 
0.7. Bottleneck 3 almost disappeared when 0 0.6P =  was applied. However, the difference 
between  0 0.7P =  and 0 0.8P =  was not as dramatic but the increase in congestion still could be 
observed such as in bottleneck 3 and bottleneck 4.  Bottleneck 3 was also more sensitive to 

00P than other bottlenecks. 
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Table 8. MAPE and GEH Analysis on Morning Congestion with Different P00. 
 Station ID 

00 0P = 61 111 141 161 191 231 261 291 351 

MAPE 4.8% 6.8% 6.3% 7.3% 6.8% 7.8% 8.6% 8.9% 7.8% 
GEH% 100.0% 100.0% 100.0% 100.0% 100.0% 94.7% 94.7% 100.0% 98.7% 

00 0.1P = 61 111 141 161 191 231 261 291 351 

MAPE 7.5% 8.6% 8.3% 11.1% 11.3% 10.7% 11.8% 10.6% 10.1% 
GEH 98.7% 96.0% 96.0% 94.7% 96.0% 86.7% 90.7% 94.7% 100.0% 

00 0.2P =  61 111 141 161 191 231 261 291 351 

MAPE 11.8% 13.9% 11.5% 14.3% 14.1% 12.1% 13.3% 11.5% 10.6% 
GEH% 84.0% 73.3% 88.0% 86.7% 82.7% 84.0% 88.0% 97.3% 93.3% 

 
Following Parameters 
 

 Parameters followingP  and followingd reflected driver cautiousness when approaching leading 
vehicles; with smaller values, the vehicles were considered more aggressive.  The range of 

followingP  was [0-0.7].  Three second rules were used to determine the safety following distance, 
which was considered the following influence distance, where a vehicle would have a relatively 
high probability of reducing its speed when the leading vehicle braked. Therefore, followingd  was 
set to range from 6 cells (150 ft) to 12 cells (300 ft), corresponding to the safety distance when 
the current vehicle’s speed was 2 cells/sec to 4 cells/sec.  In this study, uniform values were used 
for all vehicles.  Figures 12 and 13 present the speed contours and Tables 9 and 10 present the 
MAPE and GEH statistics for these parameters. 

 
 Examining Figure 12, one can see that higher values of followingP  led to greater congestion, 

as indicated by drops in speed. In particular, Bottleneck 3 was sensitive to followingP ;  at lower 
values of this parameter, the bottleneck showed speed oscillation around the threshold of 45 mph, 
but at higher values, the congestion was fairly continuous.  The duration of congestion at 
Bottleneck 3 increased severely, indicating this parameter not only affected the queue 
propagation speed but also queue dissipation duration. Therefore, followingP  was recommended to 
take a moderate value between 0.4 and 0.6, making a trade-off between queue propagation speed 
and congestion duration. The effects on flow, as shown in Table 9, were less severe.  All of the 
MAPE values remained within the acceptable thresholds while two of the nine stations exceeded 
the GEH threshold at the highest value of followingP . 

 
 The parameter followingd  had slight impacts on the four bottlenecks, as shown in Figure 13.  

It did not have a uniform effect on the four bottlenecks since the congestion in Bottlenecks 3 and 
4 were aggravated while those in Bottleneck 1 and 2 were mitigated.  The effects on flow were 
also fairly minimal since all of the MAPE and GEH statistics, shown in Table 10, were within 
the acceptable thresholds. 
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Figure 12. Speed Contour Plots of Morning Congestion for followingP .  

 
Table 9. MAPE and GEH Analysis on Morning Congestion with Different followingP .  

 Station ID 

0followingP =  61 111 141 161 191 231 261 291 351 

MAPE 6.2% 7.8% 6.8% 7.8% 8.3% 8.1% 8.9% 8.7% 9.0% 
GEH% 97.3% 93.3% 100.0% 100.0% 98.7% 93.3% 97.3% 97.3% 97.3% 

0.2followingP = 61 111 141 161 191 231 261 291 351 

MAPE 7.3% 8.6% 7.7% 9.2% 10.9% 8.7% 9.8% 9.4% 9.2% 
GEH% 93.3% 94.7% 98.7% 97.3% 93.3% 90.7% 97.3% 97.3% 94.7% 

0.4followingP =  61 111 141 161 191 231 261 291 351 

MAPE 7.5% 8.6% 8.3% 11.1% 11.3% 10.7% 11.8% 10.6% 10.1% 
GEH 98.7% 96.0% 96.0% 94.7% 96.0% 86.7% 90.7% 94.7% 100.0% 

0.7followingP = 61 111 141 161 191 231 261 291 351 

MAPE 10.7% 13.2% 11.3% 13.9% 13.9% 13.0% 13.9% 12.1% 10.1% 
GEH% 89.3% 88.0% 92.0% 92.0% 88.0% 82.7% 84.0% 97.3% 97.3% 
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Figure 13. Speed Contour Plots of Morning Congestion for followingd .  

 
Table 10.  MAPE and GEH Analysis on Morning Congestion with Different followingd .  

 Station ID 

6followingd =  61 111 141 161 191 231 261 291 351 

MAPE 7.8% 8.7% 7.5% 10.4% 11.6% 10.5% 11.5% 10.7% 9.5% 
GEH% 93.3% 93.3% 98.7% 96.0% 90.7% 90.7% 94.7% 98.7% 97.3% 

8followingd =  61 111 141 161 191 231 261 291 351 

MAPE 7.5% 8.6% 8.3% 11.1% 11.3% 10.7% 11.8% 10.6% 10.1% 
GEH 98.7% 96.0% 96.0% 94.7% 96.0% 86.7% 90.7% 94.7% 100.0% 

12followingd =  61 111 141 161 191 231 261 291 351 

MAPE 10.7% 11.0% 10.1% 12.9% 13.1% 11.6% 12.6% 11.4% 9.4% 
GEH% 86.7% 85.3% 92.0% 86.7% 88.0% 86.7% 90.7% 97.3% 98.7% 

 
 



  39

Lane Changing Aggressiveness Parameters 
 

 The parameters k and b defined the aggressiveness of mandatory lane changing behavior.  
The first parameter represented the personal desire for lane changing while the second indicated 
the tolerance of the following vehicle in the target lane.   The parameters also affected the 
location of lane changes.  For example, merging vehicles from an on-ramp changed to the 
mainline at the beginning of the acceleration lane with higher values of the parameters and closer 
to the end of the acceleration lane when the values were small.  These vehicles might even be 
blocked until a proper gap emerges.  The values of k and b considered were 0, 1, and 2.  Figure 
14, Figure 15, Table 11, and Table 12 present the results for these parameters. 
 

   
Figure 14. Speed Contour Plots of Morning Congestion for k. 

  
As can be seen from Figure 14, the formation of bottlenecks heavily depended on the 

value of k.  A higher value led to greater lane changing frequency and affected the mainline 
speed.  The parameters also affected the location of lane changes.  The effects on MAPE and 
GEH were fairly minimal for the range considered since no station exceeded the thresholds. 
 
 
 



  40

Table 11. MAPE and GEH Analysis on Morning Congestion with Different k. 
 Station ID 

0k =  61 111 141 161 191 231 261 291 351 
MAPE 5.3% 4.9% 5.4% 7.9% 7.4% 7.9% 8.9% 7.8% 7.5% 
GEH% 100.0% 100.0% 100.0% 98.7% 96.0% 94.7% 96.0% 97.3% 98.7% 

1k =  61 111 141 161 191 231 261 291 351 
MAPE 5.3% 4.7% 4.8% 6.2% 6.5% 7.3% 8.3% 7.6% 9.2% 
GEH% 100.0% 100.0% 100.0% 100.0% 97.3% 96.0% 97.3% 97.3% 97.3% 

2k =  61 111 141 161 191 231 261 291 351 
MAPE 7.5% 8.6% 8.3% 11.1% 11.3% 10.7% 11.8% 10.6% 10.1% 
GEH 98.7% 96.0% 96.0% 94.7% 96.0% 86.7% 90.7% 94.7% 100.0% 

 

  
Figure 15. Speed Contour Plots of Morning Congestion for b. 

 
 Figure 15 showed that congestion at the bottlenecks, heavily depended on b; higher 

values led to more congestion.  The GEH statistics, shown in Table 12, exceeded the acceptable 
thresholds for b = 2 and the MAPE values approached their threshold. 
 

 Based on these results, the recommended values of k and b were 2 and 1, respectively. 
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Table 12. MAPE and GEH Analysis on Morning Congestion with Different b. 
 Station ID 

0b =  61 111 141 161 191 231 261 291 351 
MAPE 5.2% 6.6% 5.7% 8.7% 9.4% 9.1% 9.4% 7.9% 7.6% 
GEH 98.6% 97.3% 100.0% 97.3% 98.6% 97.3% 95.9% 98.6% 100.0% 

1b =  61 111 141 161 191 231 261 291 351 
MAPE 7.5% 8.6% 8.3% 11.1% 11.3% 10.7% 11.8% 10.6% 10.1% 
GEH 98.7% 96.0% 96.0% 94.7% 96.0% 86.7% 90.7% 94.7% 100.0% 

2b =  61 111 141 161 191 231 261 291 351 
MAPE 17.1% 18.9% 16.4% 19.1% 17.8% 15.3% 15.8% 14.4% 11.9% 
GEH% 77.3% 64.0% 78.7% 73.3% 74.7% 76.0% 80.0% 93.3% 92.0% 

 
Lane Changing Probability Parameters 
 

 Increasing the lane changing probability would smooth the flow and alleviate the freeway 
congestion.  The _change disP value affected the queue propagation speed and queue length under 
congested conditions.  Lower values of the discretionary lane changing probability led to the 
reduction of flow and average speed, while a higher value removed the congestion that was 
supposed to occur.  Therefore, the value of _change disP ranged from [0.4, 0.6].  The mandatory lane 
changing probability was higher than the discretionary one and close to 1. Increasing the 

_change manP  enhanced the efficiency of merging, diverging and diverting behavior.   This 
parameter was examined in the range [0.3, 0.9].  Table 13, Table 14, Figure 16, and Figure 17 
present the results for these two parameters. 

 
         The congestion was mitigated with the increase of _change disP especially at Bottleneck 3.  
The higher values did not cause enough congestion based on the speed contour plots.  For the 
range of values considered, the MAPE and GEH statistics were all within acceptable thresholds. 
 

Table 13. MAPE and GEH analysis on Morning Congestion with Different _change disP .  

 Station ID 

_ 0.3change disP =  61 111 141 161 191 231 261 291 351 

MAPE 8.5% 10.3% 9.2% 11.9% 12.4% 11.8% 13.5% 11.9% 9.1% 
GEH% 98.7% 93.3% 98.7% 96.0% 92.0% 88.0% 90.7% 94.7% 94.7% 

_ 0.5change disP =  61 111 141 161 191 231 261 291 351 

MAPE 7.5% 8.6% 8.3% 11.1% 11.3% 10.7% 11.8% 10.6% 10.1% 
GEH% 98.7% 96.0% 96.0% 94.7% 96.0% 86.7% 90.7% 94.7% 100.0%

_ 0.7change disP =  61 111 141 161 191 231 261 291 351 

MAPE 7.4% 8.1% 7.8% 9.1% 9.3% 9.4% 10.7% 9.6% 8.6% 
GEH% 97.3% 96.0% 97.3% 97.3% 96.0% 96.0% 96.0% 98.7% 98.7% 
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Figure 16. Speed Contour Plots of Morning Congestion for _change disP .  

 
Table 14. MAPE and GEH Analysis on Morning Congestion with Different _change manP .  

 Station ID 

_ 0.3change manP =  61 111 141 161 191 231 261 291 351 

MAPE 7.0% 9.3% 8.6% 12.0% 12.2% 13.0% 13.6% 11.4% 11.7% 
GEH% 94.7% 90.7% 92.0% 94.7% 90.7% 85.3% 88.0% 96.0% 94.7% 

_ 0.5change manP =  61 111 141 161 191 231 261 291 351 

MAPE 5.2% 6.1% 6.7% 11.3% 10.2% 10.6% 11.5% 10.2% 10.3% 
GEH% 100.0% 100.0% 96.0% 93.3% 93.3% 90.7% 94.7% 97.3% 97.3% 

_ 0.7change manP =  61 111 141 161 191 231 261 291 351 

MAPE 7.4% 7.3% 7.4% 10.7% 11.5% 10.8% 11.2% 10.5% 10.0% 
GEH% 96.0% 96.0% 98.7% 96.0% 92.0% 90.7% 93.3% 93.3% 92.0% 

_ 0.9change manP =  61 111 141 161 191 231 261 291 351 

MAPE 7.5% 8.6% 8.3% 11.1% 11.3% 10.7% 11.8% 10.6% 10.1% 
GEH% 98.7% 96.0% 96.0% 94.7% 96.0% 86.7% 90.7% 94.7% 100.0%
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Figure 17. Speed Contour Plots of Morning Congestion for _change manP .  

 
 

Speed Oscillation Parameters 
 

 The three parameters P , onrampP  and offrampP represented oscillation of vehicles’ speeds 
when approaching different sections of the freeway. Several ramps used distinct onrampP  and 

offrampP  values to simulate recurring weekday morning congestion.  For all of these parameters, a 
higher value indicated more oscillation and congestion in the bottlenecks.   Figure 18 and Table 
15 present the results for P at 0, 0.1, and 0.2.   

 
 With the increase of P, the congestion at bottlenecks increased. The other oscillation 

parameters had the same effects.  At the higher value of 0.2, the GEH statistic was not 
considered acceptable at three out of  nine stations, with another two being very close (0.4%) to 
failing.  However, the MAPE statistics were all acceptable. 
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Table 15. MAPE and GEH Analysis on Morning Congestion with Different P. 
 Station ID 

0P =  61 111 141 161 191 231 261 291 351 
MAPE 5.0% 5.6% 5.2% 6.9% 8.2% 7.5% 9.0% 8.4% 7.9% 
GEH% 100.0% 97.3% 100.0% 100.0% 96.0% 94.7% 96.0% 97.3% 96.0% 

0.1P =  61 111 141 161 191 231 261 291 351 
MAPE 7.5% 8.6% 8.3% 11.1% 11.3% 10.7% 11.8% 10.6% 10.1% 
GEH% 98.7% 96.0% 96.0% 94.7% 96.0% 86.7% 90.7% 94.7% 100.0% 

0.2P =  61 111 141 161 191 231 261 291 351 
MAPE 14.5% 15.3% 13.2% 14.9% 14.9% 13.7% 13.8% 12.0% 11.0% 
GEH% 81.3% 82.7% 89.3% 85.3% 80.0% 85.3% 90.7% 98.7% 97.3% 

 
 

 
   

Figure 18. Speed Contour Plots of Morning Congestion for P.   
 

Incident-Free Simulation 
 

 The most difficult part in simulation was to reproduce morning congestion during the 
weekday peak. As discussed above, four bottlenecks were identified, two of which were caused 
by on-ramps and the other two were due to off-ramps. However, the severity of congestion 
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varied from day to day, and was reflected in average speed, queue length, and congestion 
duration.  Table 16 presents the range of start and end times and queue length measured in terms 
of the furthest station the queue reaches. 

 
Table 16. Bottleneck Fluctuation Ranges. 

 Bottleneck 1 Bottleneck 2 Bottleneck 3 Bottleneck 4 
Start Time 5:35 a.m. – 6:40 a.m. 5:25 a.m. – 6:30 a.m. 6:15 a.m. – 7:15 a.m. 5:30 a.m. – 7:30 a.m. 
End Time 8:00 a.m. – 9:45 a.m. 8:45 a.m. – 10:55 a.m. 9:00 a.m. – 10:45 a.m. 8:45 a.m. – 10:10 a.m. 

Queue Length 101 - 41 191 - 141 261 - 241 291 - 331 
 
 To simulate the incident-free conditions, the OD matrix based on representative flow data 

was used.  The parameters were set so that the bottleneck characteristics fell within the above 
ranges.  Figure 19 presents the speed contour of the simulated Wednesday bottlenecks with the 
parameter values in Table 17.  Table 18 presents the summary of the simulated Wednesday 
bottlenecks, including start and end times and queue length. 

 
Table 17.  Calibrated Parameter Values. 

0P  00P  P
 

_ 1offrampP B  _ 2offrampP B  offrampP  _ 3onrampP B  

0.8 0.1 0.1 0.3 0.3 0.1 0.1 

_ 4onrampP B  followingP  followingd  k  b  ,change manP  ,change disP  

0.25 0.4 8 2 1 0.9 0.5 
B_ indicates the bottleneck to which the parameter applies. 

 

 
Figure 19. Speed Contour of Simulated Wednesday Morning Congestion. 
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 Comparing Tables 18 and 17, one can see that the characteristics were within the ranges, 
indicating that the model appropriately reproduced the bottlenecks based on speed contours. 
 

Table 18.  Summary of Simulated Wednesday Bottlenecks. 
 Bottleneck 1 Bottleneck 2 Bottleneck 3 Bottleneck 4 

Start Time 6:05 a.m. 5:35 a.m. 6:40 a.m. 5:50 a.m. 
End Time 9:40 a.m. 10:30 a.m. 9:35 a.m. 9:10 a.m. 

Queue Length 51 672 241 291 
  
The success in reproducing the bottlenecks was also checked using MAPE and GEH 

statistics for major stations on the mainline.  The comparison was based on the representative 
flows from 5:00 a.m. to 11:00 a.m. with a resolution of 5 minutes.  Table 19 shows these results, 
all of which were within the acceptable thresholds. 

 
Table 19. MAPE and GEH for Bottlenecks. 

Station 61 111 141 161 191 231 261 291 351 
MAPE 7.5% 8.6% 8.3% 11.1% 11.3% 10.7% 11.8% 10.6% 10.1% 
GEH 98.7% 96.0% 96.0% 94.7% 96.0% 86.7% 90.7% 94.7% 100.0% 

 
 Since the MAPE and GEH statistics were within the specified thresholds and the 

simulated bottlenecks’ characteristics fall within the typical range, the parameters in Table 17 
were accepted as the calibrated values. 
 
Incident Simulation 
 

 To simulate an incident, one must specify the start time, end time, location, incident zone 
length, and lane closure status.  For complicated incidents, i.e., ones with multiple lane closure 
states, an input file such as the one in Figure 20 must be created.   

 

 
Figure 20. Sample Incident Input File. 

 
 Comments were indicated with an asterisk.  The system ignored comments, this data 

should be inputted using the interface described next.  The actual inputs were in the third line.  
Semicolons separated the inputs corresponding to the five characteristics of the incident.  The 
start and end times should be expressed without “a.m.” or “p.m.” and should not include zeros 
between the hour and the minute.  The hour should be in 24-hour time.  For example, five past 
three in the afternoon should be expressed as “15:5” rather than “15:05” or “3:5 p.m.”  The 
location of the incident was expressed by the cell indicator in the system, which could be looked 
up in a cell look-up diagram (see Appendix A). The incident zone length was also input in the 
units of cells rather than meters or feet. Lane closure status listed the closed lane number where 1 
represented the leftmost lane and these numbers were separated with commas. 
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 Simpler incidents with only one set of lane closure information could use a user-interface, 
shown in Figure 21.  This interface required nine inputs: (1) incident ID; (2) day of week; (3) 
simulation start time; (4) simulation end time; (5) incident start time; (6) incident end time; (7) 
incident location; (8) incident zone length; and (9) lane closure status.   The incident start and 
end time, incident location, incident zone length and lane closure status were directly typed into 
the system through the interface.  

 

 
Figure 21. Simulation Tool Interface. 

 
 Simulation start and end times determined the horizon of interest, which should cover the 

entire incident duration and enough time to dissipate resulting congestion.  If the incident 
duration was not known prior to incident clearance (as would be the case for real time 
applications), a rough simulation end time should be selected (e.g., for a major incident during 
the peak period, the simulation end time should be during the off-peak). Based on inputs (2) and 
(3), the corresponding OD tables would be loaded into the system.  At the beginning of the 
simulation, the initial network could be either empty or initialized by loading snapshots saved 
from previous incident-free simulations.  The snapshots included the layouts of the vehicles and 
their related information such as origins, destinations, trajectories, and so forth.  If the network 
was initially empty, the simulation start time should be at least one-half hour earlier than the 
incident start time in order to distribute vehicles throughout the network.  This advance time was 
not required if snapshots were loaded.  Incident start and end times define the incident duration 
and corresponding incident location, zone length (the length of the lanes occupied by incident 
activities) and lane closure status (which lanes were closed) would be applied to the system.    

 
 In its current state, the model required incident-related re-routing to be hard coded.  The 

re-routing time and the percentage of the relevant entries of the OD matrix to be used in this 
study were determined by trial and error by comparing the MAPE and GEH% so that they met 
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the same thresholds of 20% and 85%.  The trial and error process began with running the model 
with no rerouting.  Then the time point where the flow dropped on a ramp, indicating that the 
queue reached the ramp and the entrance/exit was blocked and/or drivers had started rerouting in 
significant numbers, was identified.  This was the starting point for the re-routing.  The end time 
of re-routing was considered the point when flow recovered on the ramp to levels close to the 
OD matrix.  The percentage was determined by the MAPE and GEH statistics.      

 
With the inputs just discussed and the model described in Task 5, the simulator generated 

travel times from upstream locations to the incident location every minute after the incident.  
Travel time indicated the total time from the vehicle’s current location through the incident zone. 
It was affected by two factors: upstream distance from the bottleneck and elapsed time since the 
incident. Travel times as a function of time and distance were averaged over all relevant 
vehicles.  These travel times were produced for every 0.2 mile upstream of the incident location, 
although this value could be changed.   If these data were not available throughout the simulation 
period, due to the closure of all lanes and no vehicles being able to reach and pass the incident 
location, travel times to the nearest off-ramps were provided.   Other desired measures, such as 
the queue length and dissipation could be determined from speed contour plots, which were 
generated when the simulation was complete.  At this point, these measures required user 
interaction with output files. 
 

 Using the calibrated parameters, four incidents of varying characteristics were simulated.   
 

Incident 1 
   
 Incident 1 is described as follows and is illustrated in Figure 22: 
 

• Incident ID: 35091 
• Duration: 12:50 - 13:55, May 19, 2007, Saturday 
• Location: Between SR243 Off-ramp and SR243 On-ramp 
• Type: Disabled 
• Severity: Major 
• Lane closure status: 12:50-13:55 (65 min): One lane was blocked. 
 

 
Figure 22. Location of Incident 1.   

 
 Rerouting inputs were defined based on ramp detector data. Two off-ramps upstream of 

the incident location were affected by the incident: US50 NB Off-ramp (Station 623) and US50 
SB Off-ramp (Station 212). Rerouting inputs for relevant ramps are listed in Table 20.  
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Table 20. Rerouting Start Time, End Time and Percentage for Incident 1. 
 US50 NB Off (623) US50 SB Off (212) 

Start Time 13:00 13:05 
End Time 13:25 14:20 
Percentage 10% more use this ramp 18% more use this ramp 

  
Figures 23 and 24 present comparisons of the detector data and simulation results for 

incident 1. The stations involved cover all the mainline stations upstream of the incident with 
reliable detector data and all ramps affected by the incident.  

 
Figure 23. Traffic Counts (veh / 5 min) at Freeway Measurement Stations Upstream of Incident 1. 
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Figure 24. Traffic Counts (veh / 5 min) at Ramps Upstream of Incident 1. 

 
Some of the simulated flows were underestimates for some time periods but then they 

were overestimates so the overall flows matched well.  The general shapes of the curves were 
approximately the same in most cases.  According to Figures 23 and 24, queue propagation 
speed and length followed the field data. The time difference of the queue arrival and dissipation 
was no more than 5 minutes between the simulation results and detector data.  Also recall, that 
the demands were not exactly equivalent since the simulation results were based on the estimated 
OD matrix formed from multiple days while the site flows only represented the specific day.  
The average MAPE and GEH% for each upstream station are listed in Table 21.  Data involved 
in the calculations covered vehicle counts from 12:20 to 14:25 with a resolution of 5 minutes.  

 
Table 21. MAPE and GEH% for Flow (veh / 5 min) for Incident 1. 

Mainline 261 241 231 221 211 191 161 672 
MAPE 10.39% 9.25% 8.90% 18.64% 12.30% 5.86% 6.40% 5.90% 
GEH% 96.15% 92.31% 92.31% 84.62% 84.62% 100% 100% 100% 

Mainline 151 141 121 111 91 61 51  
MAPE 6.15% 6.80% 7.46% 5.75% 7.10% 6.02% 6.80%  
GEH% 100% 100% 100% 100% 100% 100% 100%  
Ramp 222 623 212      
MAPE 10.06% 29.61% 19.78%      
GEH% 100.00% 100.00% 96.30%      
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 As indicated in Table 21, the MAPE values of all the mainline stations were less than 
20%. Meanwhile, most of the GEH% values were greater than 85% except Stations 221 and 211 
whose values were very close to the threshold.  For the ramps, the GEH% values were very 
good, but one of the MAPE values exceeded the threshold while another was very close to the 
threshold.  Some improvement might be made by improving the rerouting inputs.  According to 
these statistical results, incident 1 was properly simulated based on the calibrated parameters and 
proper rerouting inputs.  

 
 The simulation duration for this incident was 5 hours and 30 minutes from 10:30 to 

16:00.  Starting from an empty network (not using snapshots), the simulation took approximately 
9 minutes on an older desktop computer. 

 
 An excerpt of the output travel time table is shown in Table 22.  The table gives distance 

upstream of the incident on the x-axis and time of day on the y-axis.  The entries in the table are 
travel times from that upstream point through the incident location.  One can see that travel times 
increased during the incident period.  Some fluctuation existed during the period but all were 
higher than when the incident first occurred.  Some of the times seemed counterintuitive with 
vehicles closer to the incident taking slightly longer to pass through the incident zone than those 
that were further away.  This result was caused by the rules associated with overtaking and the 
uneven distribution of vehicles on the lanes.  Vehicles in the blocked lane had difficulty 
changing lanes during this incident due to the volumes on the other lanes.  This counterintuitive 
situation did not arise when the entire road upstream of the incident was heavily congested 
because little to no overtaking occurred, nor did the situation arise under low traffic flow 
conditions.  Thus, the remaining incidents did not demonstrate counterintuitive travel times.  

 
Table 22. Travel Times Associated with Incident 1. 
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Incident 2  
 

 The description of Incident 2 is as follows, and the location is shown in Figure 25:   
 

• Incident ID: 31852 
• Duration: 13:00 - 14:10, Apr 5, 2007, Thursday 
• Location: Between SR28 On-ramp and SR7100 Off-ramp 
• Type: Road Work 
• Severity: Major 
• Lane closure status:  13:00-14:10 (70 min): Two lanes were blocked 

 
Figure 25. Location of Incident 2   

 
 The rerouting inputs were initially undefined in this simulation due to lack of ramp data 

on that day.  
 
The flow plots comparing the detector data and simulation results for upstream stations are 

presented in Figure 26.  Station 51 was upstream of station 61.  The associated MAPE and 
GEH% values are presented in Table 23. Data involved in these calculations covered the vehicle 
counts ranging from 12:30 p.m. to 14:40 with a resolution of 5 minutes.  

 
Table 23. MAPE and GEH% for Flow (veh / 5 min) for Incident 2. 

 141 111 91 61 51 
MAPE 13.12% 9.55% 9.79% 8.97% 9.74% 
GEH% 92.59% 100% 100% 100% 100% 

  
The MAPE and GEH% values were all well within the thresholds.  Those values, in 

addition to the plots in Figure 26 suggested that even without accounting for rerouting during 
this off-peak incident, the simulated flows well matched those from the detectors. 
 

 The simulation of 5 hours duration (from 11:00 to 16:00) starting with an empty network 
took approximately 7 minutes.  Using snapshots would speed this simulation time. 

 
 Table 24 provides an excerpt of the travel times associated with Incident 2.  As expected, 

travel times increased during the incident period. 
 
 



  53

 
Figure 26. Traffic Counts (veh / 5 min) at Freeway Measurement Stations Upstream of Incident 2. 

 
Table 24. Travel Times for Incident 2. 
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Incident 3  
 

 The description of Incident 3 is as follows, and the location is shown in Figure 27: 
 

• Station ID: 32099 
• Duration: 7:45 – 8:10, Apr 9, 2007, Monday 
• Location: Between SR28 On-ramp and SR7100 Off-ramp 
• Type: Collision 
• Severity: High profile 
• Lane closure status: 7:45-8:10 (25 min): Two lanes were blocked. 
 

 
 

Figure 27. Location of Incident 3.   
 

 Two off-ramps and one-onramp upstream of the incident location were affected by the 
incident including the SR28 Off-ramp (Station 122), US29 Off-ramp (Station 694) and SR28 On-
ramp (Station 123). Rerouting inputs for relevant ramps are listed in Table 25.  
 

Table 25. Rerouting Start Time, End Time and Percentage for Incident 3. 
 SR28 Off (122) US29 Off (694) SR28 On (222) 

Start Time 8:00 8:10 8:00 
End Time 8:20 8:30 8:30 
Percentage 40% more used this ramp 20% more used this ramp 20% fewer used this ramp 

 
 The resulting flow plots comparing the simulated flow and the detector data are found in 

Figure 28. 
 

 The curves showed the same general shape but a slight shift in time.  However the time 
difference of queue arrival at different stations and the dissipation time was off by no more than 
5 minutes.  The MAPE and GEH% associated with the flows are provided in Table 26.  The data 
involved in the calculation covered vehicle counts from 7:15 a.m. to 8:50 a.m. with a resolution 
of 5 minutes.  
 

Table 26.  MAPE and GEH% for Flow (veh / 5 min) for Incident 3. 
 151 141 111 91 61 51 41 

MAPE 11.20% 9.30% 12.79% 10.28% 9.17% 10.65% 10.28% 
GEH% 95.00% 95.00% 90.00% 90.00% 90.00% 85.00% 85.00% 

 
 For this peak period incident, the simulation period was 4 hours in duration from 5:30 to 

9:30, starting with an empty network.  This period required about 29 minutes on a desktop 
computer.  Using the snapshot approach would cut the simulation time. 
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Figure 28. Traffic Counts (veh / 5 min) at Freeway Measurement Stations Upstream of Incident 3. 

 
 The travel time excerpt is provided in Table 27.  After the incident was cleared, the travel 

times started to decrease, as would be expected. 
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Table 27. Travel Time Excerpt for Incident 3. 

 
 
Incident 4  
 

 The description of Incident 4 is as follows, and the location is shown in Figure 29: 
 

• Incident ID: 33910 
• Duration: 8:20 – 8:45, Might 2, 2007, Wednesday 
• Location: Between SR28 On-ramp and SR7100 Off-ramp 
• Type: Collision 
• Severity: High profile 
• Lane closure status: 8:20-8:45 (25 min): Three lanes were blocked  

 
 

Figure 29. Location of Incident 4.   
 

 Three off-ramps and two on-ramps upstream of the incident location were affected by the 
incident including the SR7100 Off-ramp (Station 162), SR28 On-ramp (Station 123), SR28 Off-
ramp (Station 122), US29 On-ramp (Station 102) and US29 Off-ramp (Station 694). Rerouting 
inputs for the relevant ramps are listed in Table 28.  
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Table 28. Rerouting Start Time, End Time and Percentage for Incident 4. 
 SR7100 Off (162) SR28 On (123) SR28 Off (122) US29 On (102) US29 Off (694) 

Start Time 8:25 8:45 8:35 8:55 8:45 
End Time 8:50 8:55 9:05 9:10 9:05 
Percentage 20% more used this 

ramp 
40% fewer used 
this ramp 

10% more used 
this ramp 

40% fewer used 
this ramp 

10% more used 
this ramp 

 
 With this re-routing information, the simulation was conducted.  Figures 30 and 31 show 

the graphical comparison of simulated flow and the detector data.  Table 29 presents the MAPE 
and GEH% for the upstream locations.  The data involved in the calculation covered 7:50 a.m. to 
9:15 a.m. with a resolution of 5 minutes. 

 
 The GEH% results were perfect.  However, two of the ramps had MAPE values higher 

than the threshold, suggesting that additional refinements to the re-routing might be needed.  
Recall that the re-routing for this study was determined by trial and error.  For near-real time use, 
these values could be estimated by comparing the real time detector data with the OD matrices. 

 
Table 29. MAPE and GEH% of Incident 4. 

Mainline 161 151 141 121 111 91 61 51 
MAPE 10.53% 10.99% 9.35% 11.99% 12.03% 16.61% 13.39% 11.47% 
GEH% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

Ramp 162 123 122 102 694    
MAPE 9.61% 13.57% 27.31% 18.77% 20.51%    
GEH% 100.00% 100.00% 100.00% 100.00% 100.00%    

 
 The 4 hour 30 minute simulation period from 5:30 to 10:00, required approximately 30 

minutes on the desktop computer starting from an empty network.  Comparing among the 
incidents, one can see that the peak period simulation required more time than the off-peak. 



 

 
Figure 30. Traffic Counts (veh / 5 min) at Freeway Measurement Stations Upstream of Incident 4. 
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Figure 31. Traffic Counts (veh / 5 min) at Ramps Upstream of Incident 4. 



 

 Table 30 presents the travel time excerpt for Incident 4. 
 

Table 30. Travel Time for Incident 4. 

 
 
 When the location and time were determined, the corresponding travel time could be 

directly read from the table. The table not only provided the travel time during the incident 
clearance period but also in the queue dissipation period until the flow recovered to the normal 
condition.               
 
Queue Length and Dissipation 
 

 The end of queue propagation was when the queue reached the farthest location and the 
corresponding time was the initial time of queue dissipation. The end time of queue dissipation 
was when the queue was cleared and flow recovered to the normal conditions. This time 
information could be determined from the speed contour plots and be arranged in a graph, such 
as that shown in Figure 32, indicating the length of the queue over time. 

 
 As can be seen from Figure 32, the maximum queue length was approximately 1.4 miles.  

The queue built over 70 minutes and then began to dissipate at 14:15.  
 

 Queue dissipation could also be determined from the speed contour plots.  When the 
speed returned to free flow conditions, the queue could be considered dissipated.   
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Figure 32. Queue Length and Beginning Recovery for Incident 2. 

 
Using the Model for Off-Line Simulation 

 
 For off-line simulation, all of the inputs were known ahead of time, and the model could 

be run as previously described.  Off-line simulation could be useful for understanding the effects 
of incidents, whether real or hypothetical. 

 
Using the Model for Near-Real Time Simulation 

 
 To determine the travel time after the incident has been cleared, the incident duration was 

known and the model could be run as previously described.  However, if one desired to run the 
model during the incident, an estimated incident clearance time could be used.  To determine 
such an estimate, a statistical analysis of several years’ incidents could yield an estimate, 
possibly stratified by incident type, severity, time of day, and number of lanes blocked.  Using 
the estimate, the model could be run and snapshots saved.  The snapshots capture all details (e.g., 
origin, destination, location, speed, etc.) of the vehicles in the network in plain text files that can 
be saved locally.  When the estimate needs to be revised, or the lane blockages changed, the 
model could be re-run.  If the model were still running when the change needed to be made, the 
“stop” button on the revised interface (not illustrated here) could be used.  The new data could 
then be loaded into the interface or using the file approach.  The latest snapshots reflecting the 
true input conditions could be used with the interface. 

 
 

 
DISCUSSION 

 
 The majority of the discussion of the results was presented in the previous section for 

reading ease.  The results indicated that the developed CA model could reproduce speeds and 
queues found in the analysis of detector information.  By tracking each vehicle, the CA model 
can provide queue lengths and travel times, based on information about the network conditions, 
such as normal or incident, with the starting time and lane operability. 
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 Additional refinement of incident related parameters would yield more robust parameter 
values.  In particular, the rerouting parameters for incident conditions should be distance or 
location based and depend on the number of lanes blocked by the incident; however, rerouting 
was not part of this study.  Multiple sets of basic parameters might also be desired in the future to 
reflect light, “normal,” and heavy traffic days for a particular day of the week. 

 
 Another future direction for this work is the incorporation of multiple vehicle types, their 

OD matrices, and specific rules regarding their behavior.  In particular HOV and truck 
designations could be added. 
 

 In addition to the re-routing issue, this study encountered two major difficulties.  First, no 
incident-free day existed for I-66 in 2007; this created a challenge in determining the “typical” 
flows and corresponding OD tables.  Second, detector data were unreliable at times, as indicated 
by missing data or values that were inconsistent with the network structure.  These two 
challenges required an unanticipated amount of manual work. 

 
 
 

CONCLUSIONS 
 
• The literature review indicated that some macroscopic approaches could capture congestion 

in portions of the freeway as reflected in detector data; however, these approaches typically 
had difficulties in the presence of ramps.  A study that compared field travel times to those 
estimated by shockwave analysis and queuing theory revealed underestimated travel time.  
To avoid these discrepancies, this study examined the cellular automaton microscopic 
simulation approach. The developed models were capable of reproducing the daily 
congestion pattern.   

 
• Using the parameters calibrated on the base models and a special set of additional 

parameters, incidents were successfully simulated in terms of queue propagation speed, 
distance, and duration. Travel time from any location upstream to the incident zone was 
estimated by analyzing data for all relevant vehicles.  In the case where an incident blocks all 
lanes, no vehicles were able to pass the incident location and travel times to the off-ramps 
can be estimated instead.  

 
• Travel time variation collected from the vehicles generally followed expectations from 

practical experience. Travel time could be directly read from the tables or figures and 
provided to drivers delayed by the incident.   

 
• In the future, this CA approach, with a few refinements to the parameters, should be 

subjected to the same testing as the shockwave analysis and queuing theory to determine the 
accuracy of the results. 
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RECOMMENDATIONS 
 
1. VDOT, particularly the Virginia Transportation Research Council , should further pursue 

the use of cellular automata approaches for near-real time applications along freeways.  In 
this initial study, a full 24 hours with roughly 202,000 vehicles was simulated in 
approximately 90 minutes on a 2006 computer.  More efficient coding and data structures as 
well as faster computers and parallel processing could further improve this speed.  Even in its 
current implementation, especially with the strategy of saving the network state every few 
minutes, the simulation speed offered great potential for near-real time issues and 
predictions.   

 
2. VDOT, particularly the Operations and Security Division, should consider researching or 

adopting an approach to address detector failures and errors.  A key difficulty encountered 
in this study that would carry over into any application that used detector information as a 
major input was that detectors were not perfect sources of information.  These devices failed 
from time to time and could provide erroneous data.  Any application that interfaced with the 
detectors would need an input error checking module that included a method to interpolate 
the missing or flawed data point(s) from surrounding, functioning detectors.   

 
 
 

COSTS AND BENEFITS ASSESSMENT 
 

 Providing accurate information to motorists is a priority for VDOT.  Numerous studies 
have indicated that travel times in particular, are considered valuable to motorists.  Incident 
conditions can significantly complicate the estimation of travel times, particularly as queues 
build and then dissipate throughout the incident response.  Although the tool developed in this 
study does not attempt to estimate incident duration (with respect to how long lanes will remain 
closed), it does provide estimates of travel time, as well as an estimate of how long it will take 
for the queues to dissipate once the lanes are clear, if those parameters are input by the user.  
Incident characteristics can also be updated as the response continues with revised travel time 
estimates generated.  This tool could become an important component of VDOT’s incident 
management process, providing additional information that could then be distributed on dynamic 
message signs, 511, and through private media outlets.  In the Northern Virginia region it is 
estimated that incident-induced congestion resulted in over 68 million person-hours of delay in 
2007.  If this tool and the information it could provide to motorists could eliminate just a fraction 
of that delay by delaying or diverting trips, significant improvements in mobility would be 
possible. 

 
 As mentioned in earlier sections of this report, there are enhancements to the tool that 

would improve both the ease of use and the technical robustness of the method.  Opportunities to 
develop and implement these enhancements will be sought through the System Operations 
Research Advisory Committee process. 
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APPENDIX A 
 

CELL LOOK UP FIGURE 
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APPENDIX B 
 

STATION STDEV AND RELATIVE LSE BEFORE AND AFTER DATA PROCESSING 
FOR THE OTHER DAYS OF THE WEEK 

 
 

Monday 
Mainline 61 111 121 141 672 161 191 

STDEV Before 43.51 45.36 34.43 51.32 36.49 36.00 45.13 
STDEV After 25.75 25.90 21.96 27.74 24.08 22.89 27.68 
LSE Before 23.95% 24.42% 24.28% 24.13% 25.38% 23.12% 26.72% 
LSE After 15.81% 15.75% 17.25% 14.73% 17.95% 16.00% 17.76% 
Deletion% 5.00% 5.47% 3.82% 5.76% 4.61% 3.80% 6.50% 
Mainline 211 221 231 261 291 351  

STDEV Before 53.54 39.24 56.10 48.49 45.63 49.54  
STDEV After 35.66 23.97 29.37 27.73 26.42 28.94  
LSE Before 31.58% 23.75% 22.00% 22.64% 23.27% 22.08%  
LSE After 21.88% 15.44% 12.70% 13.77% 14.38% 13.67%  
Deletion% 11.41% 4.04% 6.50% 8.03% 5.34% 6.13%  

Ramp 102 122 123 162 173 212 623 
STDEV Before 9.92 11.90 18.11 9.14 4.23 6.10 3.05 
STDEV After 6.89 9.80 14.74 8.39 4.18 5.64 3.05 
LSE Before 43.65% 29.95% 24.47% 31.90% 45.63% 46.68% 51.13% 
LSE After 36.72% 26.11% 20.33% 30.34% 45.37% 45.29% 51.13% 
Deletion% 0.78% 3.08% 2.24% 0.92% 0.05% 0.96% 0.09% 

Ramp 222 273 342 386 388   
STDEV Before 23.05 6.21 9.25 23.25 15.25   
STDEV After 17.14 5.96 8.50 8.72 6.11   
LSE Before 23.73% 40.80% 31.61% 51.47% 53.68%   
LSE After 18.73% 40.11% 30.22% 26.88% 33.56%   
Deletion% 2.80% 0.29% 1.06% 3.41% 4.34%   
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Tuesday 

Mainline 61 111 121 141 672 161 191 
STDEV Before 46.13 46.47 35.99 50.23 38.73 36.46 48.60 
STDEV After 25.48 25.69 21.89 27.54 24.04 22.88 27.94 
LSE Before 25.30% 25.35% 26.06% 24.38% 26.54% 23.52% 27.92% 
LSE After 15.58% 15.57% 17.62% 14.39% 18.00% 16.04% 17.83% 
Deletion% 5.97% 5.87% 4.34% 5.79% 5.22% 4.01% 7.60% 
Mainline 211 221 231 261 291 351  

STDEV Before 54.36 37.46 57.14 50.31 46.31 51.78  
STDEV After 36.20 23.31 29.04 27.94 26.56 28.80  
LSE Before 31.56% 23.40% 22.36% 23.00% 23.68% 22.72%  
LSE After 21.92% 15.26% 12.35% 13.44% 14.25% 13.44%  
Deletion% 11.95% 3.59% 6.73% 6.05% 5.15% 5.97%  

Ramp 102 122 123 162 173 212 623 
STDEV Before 7.92 11.89 19.84 9.36 4.38 6.88 3.15 
STDEV After 7.03 10.08 15.32 8.21 4.27 5.67 3.10 
LSE Before 37.48% 30.14% 26.23% 32.43% 48.42% 49.44% 50.12% 
LSE After 34.67% 27.06% 20.95% 29.68% 47.99% 45.59% 49.88% 
Deletion% 0.83% 1.36% 2.58% 0.99% 0.04% 0.88% 0.03% 

Ramp 222 273 342 386 388   
STDEV Before 23.34 6.48 10.13 29.29 21.76   
STDEV After 16.93 6.29 8.94 9.23 6.36   
LSE Before 23.55% 41.54% 32.69% 61.54% 67.83%   
LSE After 18.01% 41.00% 30.39% 28.48% 35.43%   
Deletion% 2.46% 0.17% 1.07% 4.16% 4.38%   
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Wednesday 

Mainline 61 111 121 141 672 161 191 
STDEV Before 48.23 48.57 38.91 53.78 43.12 40.89 52.74 
STDEV After 27.28 27.02 23.24 29.02 25.61 24.19 29.32 
LSE Before 25.76% 25.70% 27.15% 25.18% 28.66% 25.77% 29.02% 
LSE After 16.68% 16.45% 18.73% 15.24% 19.03% 16.84% 18.33% 
Deletion% 6.06% 6.51% 5.25% 6.91% 6.65% 5.30% 8.91% 
Mainline 211 221 231 261 291 351  

STDEV Before 56.32 39.36 63.18 55.47 50.94 57.03  
STDEV After 36.86 25.29 30.61 29.62 28.61 30.68  
LSE Before 32.79% 23.92% 23.55% 24.42% 24.79% 24.03%  
LSE After 22.14% 15.93% 12.84% 14.03% 14.92% 13.98%  
Deletion% 12.25% 4.30% 8.59% 8.20% 6.62% 8.09%  

Ramp 102 122 123 162 173 212 623 
STDEV Before 8.37 11.98 20.43 10.26 5.08 7.09 3.21 
STDEV After 7.28 10.09 16.12 9.01 4.93 5.88 3.21 
LSE Before 39.09% 30.33% 26.21% 34.49% 52.49% 50.13% 50.04% 
LSE After 35.86% 27.06% 21.02% 31.94% 51.65% 46.29% 50.04% 
Deletion% 1.15% 1.97% 2.91% 1.40% 0.16% 1.42% 0.00% 

Ramp 222 273 342 386 388   
STDEV Before 24.77 7.41 10.66 17.87 10.80   
STDEV After 18.64 6.48 9.63 10.26 7.10   
LSE Before 24.55% 43.94% 32.48% 48.13% 52.90%   
LSE After 19.08% 41.50% 30.67% 30.47% 40.77%   
Deletion% 2.96% 0.85% 1.15% 2.93% 2.08%   
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Thursday 

Mainline 61 111 121 141 672 161 191 
STDEV Before 43.35 43.42 32.46 51.19 39.18 36.82 47.28 
STDEV After 26.46 26.04 22.24 28.57 25.45 24.42 28.77 
LSE Before 24.28% 23.84% 24.99% 23.88% 26.97% 24.44% 27.13% 
LSE After 15.81% 15.26% 17.03% 14.28% 18.25% 16.25% 17.46% 
Deletion% 4.82% 4.88% 3.29% 5.83% 5.52% 3.75% 7.02% 
Mainline 211 221 231 261 291 351  

STDEV Before 55.20 38.53 56.06 51.81 48.70 50.46  
STDEV After 39.03 24.62 31.00 30.37 28.39 29.92  
LSE Before 31.79% 23.28% 21.41% 23.04% 27.03% 21.37%  
LSE After 22.83% 14.97% 12.26% 13.96% 14.28% 13.08%  
Deletion% 11.19% 4.03% 6.72% 6.27% 5.41% 5.91%  

Ramp 102 122 123 162 173 212 623 
STDEV Before 7.57 10.82 18.20 9.50 4.39 7.12 3.30 
STDEV After 6.86 9.68 14.96 8.66 4.30 5.81 3.28 
LSE Before 35.66% 27.65% 23.82% 31.76% 47.25% 48.83% 50.99% 
LSE After 33.05% 25.36% 19.78% 29.82% 46.87% 44.77% 50.92% 
Deletion% 0.71% 0.94% 1.80% 0.86% 0.06% 1.22% 0.01% 

Ramp 222 273 342 386 388   
STDEV Before 23.88 6.59 10.00 11.40 7.28   
STDEV After 17.94 6.33 8.98 9.28 6.74   
LSE Before 23.47% 39.86% 29.90% 30.94% 37.15%   
LSE After 18.31% 38.47% 28.00% 26.56% 35.69%   
Deletion% 2.30% 0.24% 1.06% 1.63% 0.75%   
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Saturday 

Mainline 61 111 121 141 672 161 191 
STDEV Before 35.07 35.34 29.16 39.73 30.77 31.13 38.03 
STDEV After 26.98 27.20 23.11 29.31 24.39 24.89 28.26 
LSE Before 23.14% 22.75% 25.08% 21.02% 24.46% 22.44% 22.58% 
LSE After 18.54% 18.14% 20.96% 16.13% 19.95% 18.39% 17.85% 
Deletion% 3.97% 4.02% 3.39% 4.55% 3.45% 3.08% 5.11% 
Mainline 211 221 231 261 291 351  

STDEV Before 48.52 32.05 45.17 40.31 38.83 42.02  
STDEV After 36.84 25.19 30.54 27.84 28.08 28.86  
LSE Before 28.25% 20.58% 18.30% 18.45% 19.49% 17.92%  
LSE After 22.14% 16.75% 13.21% 13.74% 14.86% 13.19%  
Deletion% 10.22% 3.35% 5.84% 4.46% 4.40% 4.96%  

Ramp 102 122 123 162 173 212 623 
STDEV Before 7.20 8.07 14.75 7.77 4.54 6.96 4.56 
STDEV After 6.83 7.83 12.95 7.51 4.54 4.88 4.42 
LSE Before 33.80% 26.93% 19.97% 31.49% 44.62% 50.06% 51.85% 
LSE After 32.92% 26.41% 18.21% 30.32% 44.62% 42.97% 51.37% 
Deletion% 0.56% 0.33% 1.12% 0.26% 0.00% 1.73% 0.14% 

Ramp 222 273 342 386 388   
STDEV Before 19.40 6.07 9.57 10.84 6.96   
STDEV After 16.70 5.77 8.71 9.66 6.56   
LSE Before 20.69% 38.71% 27.24% 25.65% 31.15%   
LSE After 18.59% 37.43% 25.86% 24.13% 30.23%   
Deletion% 1.49% 0.28% 0.90% 1.09% 0.66%   
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Sunday 

Mainline 61 111 121 141 672 161 191 
STDEV Before 42.56 43.49 37.30 47.13 34.70 34.98 45.90 
STDEV After 29.75 30.55 27.53 31.91 25.86 26.63 29.29 
LSE Before 30.01% 29.85% 32.88% 27.17% 34.27% 30.70% 30.02% 
LSE After 21.72% 21.43% 25.76% 19.48% 24.48% 22.04% 21.40% 
Deletion% 7.02% 6.97% 6.39% 7.29% 5.14% 4.81% 9.08% 
Mainline 211 221 231 261 291 351  

STDEV Before 50.26 38.30 52.22 46.22 44.58 48.61  
STDEV After 34.22 26.80 31.63 29.66 28.43 30.16  
LSE Before 34.75% 26.77% 23.59% 23.67% 24.95% 22.90%  
LSE After 25.53% 19.95% 16.15% 16.77% 18.08% 16.20%  
Deletion% 13.54% 5.78% 7.76% 6.93% 6.67% 6.91%  

Ramp 102 122 123 162 173 212 623 
STDEV Before 7.05 8.28 15.22 7.65 4.37 4.95 3.59 
STDEV After 6.65 7.91 12.32 7.28 4.35 4.31 3.57 
LSE Before 37.43% 31.67% 24.36% 34.75% 48.58% 49.97% 59.48% 
LSE After 36.24% 30.77% 21.22% 33.82% 48.45% 47.59% 59.36% 
Deletion% 1.22% 0.51% 2.34% 0.48% 0.01% 0.47% 0.02% 

Ramp 222 273 342 386 388   
STDEV Before 18.60 5.41 9.51 11.52 6.08   
STDEV After 14.85 5.17 8.33 9.60 5.76   
LSE Before 23.68% 44.61% 31.80% 31.75% 32.94%   
LSE After 20.36% 42.59% 29.53% 28.94% 32.04%   
Deletion% 2.40% 0.20% 1.24% 1.89% 0.23%   

 


